Title: Advanced LIGO status and prospects to probe the strong gravity regime
Date: Nov 12, 2014 09:25 AM
URL: http://pirsa.org/14110088
Abstract: <span>Gravitational waves will allow scientists to test Einsteinâ $\epsilon^{\mathrm{TM}_{S}}$ theory of General Relativity in the previously unexplored strong-field regime. Einsteinâ $€^{\mathrm{TM}}$ s theory of general relativity, as the most accepted theory of gravity, has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves may carry information about highly dynamical and strong-field gravity that is required to generate measurable waves. Coalescing compact binaries are the most promising sources of gravitational waves accessible to ground-based interferometers, such as Advanced LIGO. Made of neutron stars and/or black holes that orbit each other hundreds of times a second just before they collide, the resulting waves are imprinted with information about the individual objects and the dynamical coalescence process. After reviewing the basic properties of gravitational waves, I will present an overview of the detector design and provide an update on the current status of Advanced LIGO and its ability to probe the strong gravity regime.</span>

## Advanced LIGO Status and Prospects to Probe the Strong Gravity Regime

Laleh Sadeghian<br>University of Wisconsin-Milwaukee<br>For LIGO scientific collaboration and<br>Virgo collaboration<br>LIGO-G1401303<br>EHT2014, Perimeter Institute<br>Nov 12 ${ }^{\text {th }}, 2014$



LSC) $\underset{\text { Scientific }}{\text { LIGO }}$


## Weak field regime tests of GR



Almost all of the previous experimental tests of GR are in the quasistationary, quasi-linear weak field regime.


## Strong field regime tests of GR

- Binary pulsars probe GR in the dynamical and quasi-linear sector.

- Future EM observations of BH accretion disks probe GR in the non-linear and stationary sector.


## EventHorizonTelescope

- Gravitational waves will allow a full non-linear and dynamical strong field regime test of GR.

LSC ${ }^{\text {) }}$

## Strong field regime tests of GR

- Binary pulsars probe GR in the dynamical and quasi-linear sector.

- Future EM observations of BH accretion disks probe GR in the non-linear and stationary sector.


## EventHorizonTelescope

- Gravitational waves will allow a full non-linear and dynamical strong field regime test of GR.

LSC ${ }^{\text {) }}$

## Gravitational Waves

$$
h_{i j}=\frac{2 G}{c^{4}} \frac{1}{r} \frac{d^{2} Q_{i j}}{d t^{2}} \text { quadrupole moment }
$$



Direct detection of Gravitational waves

J. Creighton

## Direct detection of Gravitational waves



LSC ${ }^{\text {) }}$
Laleh Sadeghian, EHT 2014

## Direct detection of Gravitational waves


predicted polarizations by GR


## Direct detection of Gravitational waves


predicted polarizations by GR


5
LSC ${ }^{\text {) }}$
signal for a binary NS in circular orbit:

signal for a binary NS in circular orbit:


## Global Network of Interferometers



## Global Network of Interferometers



[^0]
## Multi-messenger Astronomy



- Science return from Gravitational Wave detection will be strongly enhanced if there are simultaneous EM observations.
- EM counterparts to GW events will result in better localization of GW events.
- After the first four published GW events, LSC and Virgo will promptly release public triggers to be followed up.

LSC ${ }^{\text {) }}$

## Multi-messenger Astronomy



- Science return from Gravitational Wave detection will be strongly enhanced if there are simultaneous EM observations.
- EM counterparts to GW events will result in better localization of GW events.
- After the first four published GW events, LSC and Virgo will promptly release public triggers to be followed up.

LSC ${ }^{\text {) }}$

## Initial LIGO

sensitivity curves of the detectors

[Hz]


## Initial LIGO



## Initial LIGO




LIGO and Virgo Observing Runs


Fifth science run (S5) data and all Fifth and Sixth science runs results can be found in ligo.org

LSC)


|  | Estimated <br> Run |  | BNS Range (Mpc) |  | Number <br> of BNS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Epoch | Duration | LIGO | BNS Localized <br> within |  |  |  |
| Detections | $5 \operatorname{deg}^{2}$ | $20 \mathrm{deg}^{2}$ |  |  |  |  |
| 2015 | 3 months | $40-80$ | - | $0.0004-3$ | - | - |
| $2016-17$ | 6 months | $80-120$ | $20-60$ | $0.006-20$ | 2 | $5-12$ |
| $2017-18$ | 9 months | $120-170$ | $60-85$ | $0.04-100$ | $1-2$ | $10-12$ |
| $2019+$ | (per year) | 200 | $65-130$ | $0.2-200$ | $3-8$ | $8-28$ |
| $2022+$ (India) | (per year) | 200 | 130 | $0.4-400$ | 17 | 48 |

arXiv:1304.0670

## Recent News

(September 26, 2014)

https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=14821
LSC) Laleh Sadeghian, EHT 2014 (c)


Field Strength
credit: Nico Yunes

## Gravitational waves can probe the non-linear, dynamical, strong-field regime.

Will, Liv. Rev., 2005, Psaltis, Liv. Rev., 2008, Siemens \& Yunes, Liv. Rev. 2013.
LSC
Laleh Sadeghian, EHT 2014


Field Strength
credit: Nico Yunes

## Gravitational waves can probe the non-linear, dynamical, strong-field regime.

Will, Liv. Rev., 2005, Psaltis, Liv. Rev., 2008, Siemens \& Yunes, Liv. Rev. 2013.
LSC
Laleh Sadeghian, EHT 2014

## Feasible GR tests using Gravitational Wave detection

- Do Gravitational waves travel at the speed of light? Is Graviton massless?
- Do Gravitational waves have only plus and cross polarizations or are there more?
- Does Kerr solution explain the exterior geometry of a BH? (nohair theorem test)


## Alternative theory zoo

| - Scalar-Tensor theories <br> [Will, PRD 50, 1994 Scharre \& Will, PRD 65, 2002 Will \& Yunes, COG 21, 2004 Berti, et al. PRD 71, 2005 Alsing ot al, 2011] | $\tilde{h}=\tilde{h}_{\mathrm{GR}} e_{\substack{\text { inversely related do he BD } \\ \text { coupling parameter }}}^{i \beta_{\mathrm{BD}} \eta^{2 / 5} f_{\text {GW requency }}^{-7 / 3}}$ |
| :---: | :---: |
| - Massive Graviton theories <br> [Will, PRD 57, 1998 <br> Will \& Yunes, CQG 21, 2004 <br> Stavidis \& Will, PRD 80, 2009 <br> Arun \& Will, CQG 26, 2009] | $\tilde{h}=\tilde{h}_{\mathrm{GR}} e_{\substack{i \beta_{\mathrm{MG}} \eta^{0} f^{-1} \\ \text { remplated to gravition } \\ \text { compavelengith }}}$ |
| - Gravitational Parity Violation <br> [Alexander, Finn \& Yunes, PRD 78, 2008 Yunes, et al, PRD 82, 2010 Alexander and Yunes. Phys. Rept. 480, 2009] | $\tilde{h}=\tilde{h}_{\mathrm{GR}}\left(1+\underset{\substack{\text { PV } \\ \text { related to CS coupling }}}{\alpha_{\mathrm{PV}}} \eta^{0} f^{1}\right)$ |
| - $\mathrm{G}(\mathrm{t})$ theories <br> [Yunes, Pretorius, \& Spergel, PRD 81, 2010] |  |
| - Quadratic Gravity <br> [Yunes \& Stein, PRD 83, 2011 Yagi. Stein, Yunes \& Tanaka, PRD 87, 2013] | $\tilde{h}=\tilde{h}_{\mathrm{GR}} e^{i \beta_{\mathrm{QG}} \eta^{-4 / 5} f^{-1 / 3}}$ |
| - Lorentz-Violating GW propagation <br> [Mirshekari, Yunes \& Will, PRD 85, 2012] | $\tilde{h}=\tilde{h}_{\mathrm{GR}} e^{i \beta_{\mathrm{LV}} \eta^{0} f^{\alpha-1}}$ |
| - Shielded theories <br> [Damour \& Esposito-Farese, Barausse, et al (spontaneous scalarization) <br> Alsing, et al + Berti, et al (massive scalar)] | $\tilde{h}=\tilde{h}_{\mathrm{GR}} e^{i \zeta \Theta\left(f-m_{s}\right) \eta^{b_{1}} f^{b_{2}}}$ |

## In Summary:

- First generation of gravitational wave detectors have been built and operated in 2005-2010.
- Numerous gravitational wave searches performed. No detections, but we have demonstrated ability to detect.
- Advanced detectors will be online next year and will achieve 10x initial detectors sensitivity few years afterwards
- Gravitational waves observation of compact binary inspirals will allow us to constrain deviations from GR.
- Gravitational wave and multi-messenger astronomy are coming soon.


[^0]:    LSC ${ }^{\text {) }}$

