Title: Detection and Variability of Closure Phases in Sgr A*

Date: Nov 10, 2014 02:30 PM

URL: http://pirsa.org/14110070

Abstract: Closure phases measured on the Arizona-California-Hawaii triangle of the EHT over multiple years indicate that the 1.3 mm structure of Sgr A* is asymmetric on scales of a few Schwarzschild radii. The closure phase data provide new constraints on models of the quiescent emission from Sgr A*. Time variability in the closure provides evidence of structural changes on scales resolved by millimeter-wavelength VLBI.

VLBI.
span>

Pirsa: 14110070 Page 1/26

Pirsa: 14110070 Page 2/26

Products of Radio Interferometry

Each baseline has instantaneous "(u,v)" coordinates that correspond to the spatial frequency being measured

After correlation and calibration, end up with a complex visibility on each baseline

Van Cittert--Zernike theorem tells us the visibility is related to the Fourier transform of the image

Amplitude: How much power is on this spatial frequency?

Phase: Where is that power located?

Phase information is especially powerful

Pirsa: 14110070 Page 3/26

Products of Radio Interferometry

Each baseline has instantaneous "(u,v)" coordinates that correspond to the spatial frequency being measured

After correlation and calibration, end up with a complex visibility on each baseline

Van Cittert--Zernike theorem tells us the visibility is related to the Fourier transform of the image

Amplitude: How much power is on this spatial frequency?

Phase: Where is that power located?

Phase information is especially powerful

Pirsa: 14110070 Page 4/26

Pirsa: 14110070

(Skarbnik+ 2010)

Strategies to mitigate atmospheric corruption

Amplitude: Cannot use coherent (vector) averaging directly

- Use incoherent (scalar) averaging + noise debiasing -or-
- Use prior phase information (e.g., from similar baseline)

Phase: Cannot derive a meaningful visibility phase

Use closure phase

$$\varphi_{ABC} = \varphi_{AB} + \varphi_{BC} + \varphi_{CA}$$

$$\varphi_{AB, obs} = \varphi_{AB, src} + \sigma_{A, atm} - \sigma_{B, atm} + \varepsilon$$

$$\varphi_{BC, obs} = \varphi_{BC, src} + \sigma_{B, atm} - \sigma_{C, atm} + \varepsilon$$

$$\varphi_{CA, obs} = \varphi_{CA, src} + \sigma_{C, atm} - \sigma_{A, atm} + \varepsilon$$

$$\varphi_{ABC, obs} = \varphi_{ABC, src} + \varepsilon$$

Strategies to mitigate atmospheric corruption

Amplitude: Cannot use coherent (vector) averaging directly

- Use incoherent (scalar) averaging + noise debiasing -or-
- Use prior phase information (e.g., from similar baseline)

Phase: Cannot derive a meaningful visibility phase

Pirsa: 14110070 Page 7/26

Strategies to mitigate atmospheric corruption

Amplitude: Cannot use coherent (vector) averaging directly

- Use incoherent (scalar) averaging + noise debiasing -or-
- Use prior phase information (e.g., from similar baseline)

Phase: Cannot derive a meaningful visibility phase

Use closure phase

$$\varphi_{ABC} = \varphi_{AB} + \varphi_{BC} + \varphi_{CA}$$

$$\varphi_{AB, obs} = \varphi_{AB, src} + \sigma_{A, atm} - \sigma_{B, atm} + \varepsilon$$

$$\varphi_{BC, obs} = \varphi_{BC, src} + \sigma_{B, atm} - \sigma_{C, atm} + \varepsilon$$

$$\varphi_{CA, obs} = \varphi_{CA, src} + \sigma_{C, atm} - \sigma_{A, atm} + \varepsilon$$

$$\varphi_{ABC, obs} = \varphi_{ABC, src} + \varepsilon$$

Pirsa: 14110070

Prior EHT observational status

2007: Long-baseline detections of Sgr A* on JCMT-SMT baseline (Doeleman et al. 2008), amplitudes only

2009: Long-baseline detections of Sgr A* on JCMT-SMT and JCMT-CARMA baselines, amplitudes only + limit on closure phase: within 40 degrees of zero)

Meanwhile, closure phases used to model calibrator sources (Lu et al. 2012, 2013; several in prep. by other authors)

Pirsa: 14110070 Page 9/26

Progress toward better closure phase estimates

Algorithmic:

- Fixed bug in fourfit that introduced additional phase error
- Introduction of fourfit mode designed to optimize closure phase estimation
- Ad hoc phase capability to increase S/N on weak baselines
- Delay and rate closure to find weak fringes

Sensitivity:

- Use of phased-array stations
- Better weather in 2013
- More data thanks to dual-polarization systems
- Large accumulated number of data points

Pirsa: 14110070 Page 10/26

Sgr A* closure phases

Evidence of nonzero closure phase as early as 2011, but not statistically significant enough

New data points from 2012 & 2013 indicate a (mostly) consistent sign of the closure phase on intra-US triangle

California-Hawaii-Arizona

Pirsa: 14110070 Page 11/26

Nonzero closure phase

The closure phase is nonzero at high statistical significance

Weighted mean: 6.5 deg +/- 0.7 deg

Median: 6.3 deg (3.5-7.7 deg at 99.7% confidence)

A bootstrap analysis of the median found only positive values

over 108 trials

Pirsa: 14110070 Page 12/26

Implications of nonzero closure phase

Rules out point-symmetric brightness distributions

Sgr A* is not an elliptical Gaussian, a ring, or a symmetric double

Constraints provided by two-point-source models (example predictions for one scan)

Pirsa: 14110070 Page 13/26

Pirsa: 14110070 Page 14/26

Implications of nonzero closure phase

Rules out point-symmetric brightness distributions

Sgr A* is not an elliptical Gaussian, a ring, or a symmetric double

Constraints provided by two-point-source models (example predictions for one scan)

Allowed region given all detected closure phases

Results applicable to some other point-symmetric geometries, but not to reflection-symmetric geometries

Pirsa: 14110070 Page 15/26

Implications of nonzero closure phase

Closure phases place constraints on all models

Closure phases break the 180-degree rotational degeneracy of models

(Broderick+ 2011)

Pirsa: 14110070 Page 16/26

Dependence on GST

Trend for closure phase to be larger toward the end of the night

Likely due to the changing projection of the baselines

Pirsa: 14110070 Page 17/26

Dependence on GST

Trend for closure phase to be larger toward the end of the night

Likely due to the changing projection of the baselines

Pirsa: 14110070 Page 18/26

Pirsa: 14110070 Page 19/26

RIAF model fitting: Position Angle

Closure phase data are consistent with prior estimates

Model parameters are (mostly) consistent with those derived from amplitude data alone

Pirsa: 14110070 Page 20/26

Interpreting variability within RIAF model

Within RIAF context, variability could be due to a new feature

Additional flux prefers position angle of disk or jet

Currently highly speculative

More data will help!

(courtesy A. Broderick)

Pirsa: 14110070 Page 21/26

Interpreting variability within RIAF model

Within RIAF context, variability could be due to a new feature

Additional flux prefers position angle of disk or jet

Currently highly speculative

More data will help!

(courtesy A. Broderick)

Pirsa: 14110070 Page 22/26

Pirsa: 14110070

Connections to refractive effects

Refractive noise from interstellar scattering will dominate on very long baselines (probably > I Earth diameter)

Effect already seen at 1.3 cm

Stability of closure phases at 1.3 mm indicates that

- Detected closure phases are from source, not scattering
- Longer ground-based baselines may not have substantial refractive phase noise (though still significant amplitude loss!)

Longer-baseline data at 1.3 mm (and better data at 3 mm and longer) will help us understand scattering properties better

Deblurring may be possible (talk by M. Johnson on Thursday)

Pirsa: 14110070 Page 24/26

Summary

We have detected nonzero closure phases on Sgr A*

Implies asymmetry, places strong constraints on emission models

Small-scale structural variability detected

Refractive scattering likely not a serious issue on these baselines

More sensitive data, bigger triangles coming soon!

Pirsa: 14110070 Page 25/26

Implications of nonzero closure phase

Rules out point-symmetric brightness distributions

Sgr A* is not an elliptical Gaussian, a ring, or a symmetric double

Constraints provided by two-point-source models (example predictions for one scan)

Allowed region given all detected closure phases

Pirsa: 14110070 Page 26/26