Title: Topological Model for Domain Walls in (Super-)Yang-Mills Theories

Date: Nov 04, 2014 02:00 PM

URL: http://pirsa.org/14110047

Abstract: We discuss a topological description of the confining phase of (Super-)Yang-Mills theories with gauge group SU(N) which encodes all the Aharonov-Bohm phases of configurations of non-local operators. This topological action shows an additional 1-form gauge symmetry. After the introduction of domain walls, this 1-form gauge symmetry demands the appearance of new fields on the worldvolume of the wall. These new fields have a topological Chern-Simons action at level N, also suggested by string theory constructions.

Pirsa: 14110047 Page 1/50

A Topological Model for Domain Walls in (Super-)Yang-Mills Theories

hep-th: 1405.4291 to appear in PRD

String Seminar - Perimeter Institute

Markus Dierigl

DESY, Hamburg (Germany)

November 4th 2014

1/33

Pirsa: 14110047 Page 2/50

Pirsa: 14110047 Page 3/50

In collaboration with Alexander Pritzel

Based on:

- Acharya, Vafa (2001): hep-th/0103011
- ▶ Banks, Seiberg (2010): 1011.5120
- Aharony, Seiberg, Tachikawa (2013): 1305.0318
- ► Gaiotto (2013): 1306.5661
- Gukov, Kapustin (2013): 1307.4793
- Seiberg, Kapustin (2014): 1401.0740

Pirsa: 14110047 Page 4/50

2/33

Outline

- 1. Motivation
- 2. YM and vacuum structure
- 3. Topological action
- 4. Domain walls
- 5. Super-Yang-Mills
- 6. Dynamics of domain walls
- 7. Outlook

3 / 33

Pirsa: 14110047 Page 5/50

Domain walls in SYM theories

- ► Tension exactly calculable [Dvali, Shifman '96]
- ► Topological phases in gauge theories
- Relation to D-branes in string theory

Topological approach

- ► Focus on topological subsector leads to significant simplifications
- Contains information about vacuum structure
- Very robust against deformations (even SUSY)

5/33

Pirsa: 14110047 Page 6/50

Domain walls in SYM theories

- ► Tension exactly calculable [Dvali, Shifman '96]
- ► Topological phases in gauge theories
- Relation to D-branes in string theory

Topological approach

- ► Focus on topological subsector leads to significant simplifications
- Contains information about vacuum structure
- Very robust against deformations (even SUSY)

5/33

Pirsa: 14110047 Page 7/50

Domain walls in SYM theories

- ► Tension exactly calculable [Dvali, Shifman '96]
- ► Topological phases in gauge theories
- Relation to D-branes in string theory

Topological approach

- ► Focus on topological subsector leads to significant simplifications
- Contains information about vacuum structure
- Very robust against deformations (even SUSY)

5/33

Pirsa: 14110047 Page 8/50

Pirsa: 14110047

Domain walls in SYM theories

- ► Tension exactly calculable [Dvali, Shifman '96]
- ► Topological phases in gauge theories
- Relation to D-branes in string theory

Topological approach

- ► Focus on topological subsector leads to significant simplifications
- Contains information about vacuum structure
- Very robust against deformations (even SUSY)

5 / 33

Page 9/50

Pirsa: 14110047

Domain walls in SYM theories

- ► Tension exactly calculable [Dvali, Shifman '96]
- ► Topological phases in gauge theories
- Relation to D-branes in string theory

Topological approach

- ► Focus on topological subsector leads to significant simplifications
- Contains information about vacuum structure
- Very robust against deformations (even SUSY)

5/33

Page 10/50

M-/ string theory prediction [Acharya, Vafa '01]:

CS-term on domain walls (of level N for SU(N) gauge group)

 \Rightarrow Use a **topological approach** to investigate domain walls in field theory

CS-term as a consequence of gauge invariance

6/33

Pirsa: 14110047 Page 11/50

M-/ string theory prediction [Acharya, Vafa '01]:

CS-term on domain walls (of level N for SU(N) gauge group)

 \Rightarrow Use a **topological approach** to investigate domain walls in field theory

CS-term as a consequence of gauge invariance

6 / 33

Pirsa: 14110047 Page 12/50

M-/ string theory prediction [Acharya, Vafa '01]:

CS-term on domain walls (of level N for SU(N) gauge group)

 \Rightarrow Use a **topological approach** to investigate domain walls in field theory

CS-term as a consequence of gauge invariance

6/33

Pirsa: 14110047 Page 13/50

M-/ string theory prediction [Acharya, Vafa '01]:

CS-term on domain walls (of level N for SU(N) gauge group)

 \Rightarrow Use a **topological approach** to investigate domain walls in field theory

CS-term as a consequence of gauge invariance

6/33

Pirsa: 14110047 Page 14/50

Pirsa: 14110047 Page 15/50

Yang-Mills theory (basics)

All ingredients for the topological construction are already there in the non-supersymmetric case

Consider pure Yang-Mills theory with gauge group G = SU(N)/H (with $H \subset C$) \Rightarrow algebra g = su(N) (defines local dynamics)

Lagrangian density in terms of 't Hooft coupling $\lambda = g^2 N$

$$\mathcal{L}_{YM} = -rac{N}{2\lambda} \mathrm{Tr}(F \wedge *F) + rac{i heta}{8\pi^2} \mathrm{Tr}(F \wedge F)$$

→ develops a mass gap (confinement)

We assume that: Confining mechanism is condensation of monopoles

8/33

Pirsa: 14110047 Page 16/50

Yang-Mills theory (basics)

All ingredients for the topological construction are already there in the non-supersymmetric case

Consider pure Yang-Mills theory with gauge group G = SU(N)/H (with $H \subset C$) \Rightarrow algebra g = su(N) (defines local dynamics)

Lagrangian density in terms of 't Hooft coupling $\lambda = g^2 N$

$$\mathcal{L}_{YM} = -rac{N}{2\lambda} \mathrm{Tr}(F \wedge *F) + rac{i heta}{8\pi^2} \mathrm{Tr}(F \wedge F)$$

→ develops a mass gap (confinement)

We assume that: Confining mechanism is condensation of monopoles

8/33

Pirsa: 14110047 Page 17/50

Large N limit

Usual procedure for the large N limit:

$$\mathcal{L} = N^2 \mathcal{L}'(\Phi, \partial \Phi)$$

with \mathcal{L}' independent of N

BUT: This leads to a θ/N instead of θ dependence, in conflict with

- $ightharpoonup 2\pi$ periodicity in θ
- ightharpoonup heta-dependence of the energy

9/33

Pirsa: 14110047 Page 18/50

Large N limit

Usual procedure for the large N limit:

$$\mathcal{L} = N^2 \mathcal{L}'(\Phi, \partial \Phi)$$

with \mathcal{L}' independent of N

BUT: This leads to a θ/N instead of θ dependence, in conflict with

- $ightharpoonup 2\pi$ periodicity in θ
- lacktriangledown heta-dependence of the energy

9/33

Pirsa: 14110047 Page 19/50

Solution by branch structure [Witten '79]

Not a single but **several branches** of the theory (quasi-stable in large *N* limit)

- ▶ single branch: $2\pi N$ periodicity
- \triangleright collection: 2π periodicity
- ▶ labeled by additional parameter $k \in \{0, ..., N-1\}$
- ightharpoonup interchange roles for shift in heta

By the Witten effect [Witten '79]:

- ▶ Different charge of condensate for different branches
- ► Lowest energy for purely magnetically charged condensate
- ▶ Note: Topologically k and θ with similar effects

10 / 33

Pirsa: 14110047 Page 20/50

Classification of vacua

Not enough to fix local dynamics \Rightarrow fix global gauge group (i.e. H) by classification via non-local operators

For SU(N)/H: classification via charges in $\mathbb{Z}_N \times \mathbb{Z}_N$ (electric, magnetic) [Seiberg, Aharony, Tachikawa '13]

- \Rightarrow couple to discrete (\mathbb{Z}_N) gauge fields A (electric), \tilde{A} (magnetic)
- Line operators

$$\exp\left[\oint_{\gamma}(iqA+im ilde{A})
ight]$$

Surface operators

$$\exp\left[i\eta\int_{\Sigma}F\right]$$

11/33

Pirsa: 14110047 Page 21/50

Classification of vacua

Fix global structure of the gauge group by choosing a maximal set of line operators satisfying the "Dirac quantization"

$$qm'-mq'\in\mathbb{Z}$$

Other line operators have to be supplemented by surface operator [Aharony, Seiberg, Tachikawa '13]

Example: SU(3), $SU(3)/\mathbb{Z}_3$ (similar to one branch of SU(N))

SU(3)

 $(SU(3)/\mathbb{Z}_3)_{\theta=0}$

 $(SU(3)/\mathbb{Z}_3)_{\theta=2\pi}$

12/33

Classification of vacua

Fix global structure of the gauge group by choosing a maximal set of line operators satisfying the "Dirac quantization"

$$qm'-mq'\in\mathbb{Z}$$

Other line operators have to be supplemented by surface operator [Aharony, Seiberg, Tachikawa '13]

Example: SU(3), $SU(3)/\mathbb{Z}_3$ (similar to one branch of SU(N))

SU(3)

 $(SU(3)/\mathbb{Z}_3)_{\theta=0}$

 $(SU(3)/\mathbb{Z}_3)_{\theta=2\pi}$

12 / 33

Construction of the topological action

- ▶ Consider a single branch of the SU(N) theory
- $ightharpoonup \mathbb{Z}_N$ theory with a magnetically charged condensate of charge N (c.f. dual superconductor)
- ▶ Embed the \mathbb{Z}_N theory in a U(1) symmetry

Starting action:

$$S=\int h\wedge (darphi-N ilde{A})$$

gauge transformations:

$$\tilde{A} \to \tilde{A} + d\alpha, \quad \varphi \to \varphi + N\alpha$$

14/33

Pirsa: 14110047 Page 24/50

Derivation by Higgsing

Start with complex scalar field Φ of (magnetic) **charge N**:

$$\Phi \rightarrow e^{iN\alpha}\Phi$$

 \Rightarrow Covariant derivative: $D\Phi = (d - iN\tilde{A})\Phi$

Higgsing:

$$\langle |\Phi| \rangle = v \gg 1, \ m_{|\Phi|} \gg 1 \Rightarrow \Phi = v e^{i\varphi}$$

$$D\Phi = iv(d\varphi - N\tilde{A})$$

Euclidean action dominated by $d\varphi=N\tilde{A}$, fix by Lagrange multiplier

$$\Rightarrow S = \int h \wedge (d\varphi - N\tilde{A})$$

15/33

Derivation by Higgsing

Start with complex scalar field Φ of (magnetic) **charge N**:

$$\Phi \rightarrow e^{iN\alpha}\Phi$$

 \Rightarrow Covariant derivative: $D\Phi = (d - iN\tilde{A})\Phi$

Higgsing:

$$\langle |\Phi| \rangle = v \gg 1, \ m_{|\Phi|} \gg 1 \Rightarrow \Phi = v e^{i\varphi}$$

$$D\Phi = iv(d\varphi - N\tilde{A})$$

Euclidean action dominated by $d\varphi=N\tilde{A}$, fix by Lagrange multiplier

$$\Rightarrow S = \int h \wedge (d\varphi - N\tilde{A})$$

15/33

Dualizing

[Gukov, Kapustin '13], [Kapustin, Seiberg '14]

- ▶ Dualize φ to 2-form B coupling to the vortices of φ , i.e. electric flux tubes
- ightharpoonup Dualize $ilde{A}$ to electric gauge field A

$$S = \int \left[h \wedge (d\varphi - N\tilde{A}) + \frac{i}{2\pi} d\varphi \wedge dB + \frac{i}{2\pi} d\tilde{A} \wedge dA \right]$$

$$= \frac{i}{2\pi} \int \tilde{F} \wedge (F - NB)$$

Form of BF action [Horowitz '89], dual description of \mathbb{Z}_N theory

Describes **Aharonov-Bohm phases** associated to line and surface operators in a dual superconductor (with charge *N* condensate)

16/33

Pirsa: 14110047 Page 27/50

Dualizing

[Gukov, Kapustin '13], [Kapustin, Seiberg '14]

- ▶ Dualize φ to 2-form B coupling to the vortices of φ , i.e. electric flux tubes
- ightharpoonup Dualize $ilde{A}$ to electric gauge field A

$$S = \int \left[h \wedge (d\varphi - N\tilde{A}) + rac{i}{2\pi} d\varphi \wedge dB + rac{i}{2\pi} d\tilde{A} \wedge dA
ight]
onumber \ = rac{i}{2\pi} \int \tilde{F} \wedge (F - NB)$$

Form of BF action [Horowitz '89], dual description of \mathbb{Z}_N theory

Describes **Aharonov-Bohm phases** associated to line and surface operators in a dual superconductor (with charge *N* condensate)

16/33

Pirsa: 14110047 Page 28/50

Inclusion of the θ term

Consider the shift $\theta \to \theta + 2\pi$

- Condensate acquires electric charge by Witten effect
- ▶ Pure 't Hooft lines should **not** be gauge invariant anymore
- Combination of 't Hooft and Wilson lines should be gauge invariant
- \Rightarrow Modify the 1-form transformations for $\tilde{\mathbf{A}}$

$$ilde{A}
ightarrow ilde{A} - rac{ heta}{2\pi} \lambda$$

Gauge invariant dyonic line operator (for $\theta=2\pi$)

$$\delta \exp \left[i \oint_{\gamma} (qA + qN\tilde{A}) \right] = 0$$

18/33

Inclusion of θ term

BUT: Action not gauge invariant with modified transformations

 \Rightarrow Add a new term that recovers gauge invariance

$$S = rac{i}{2\pi} \int \left[ilde{F} \wedge (F - NB) - rac{N heta}{4\pi} B \wedge B
ight]$$

with 1-form transformations:

$$B o B + d\lambda, \quad A o A + N\lambda, \quad \tilde{A} o \tilde{A} - rac{ heta}{2\pi}\lambda$$

 $\Rightarrow \theta F \wedge F$ term with (as expected) $2\pi N$ periodicity

19/33

Complete SU(N) action

Recover all branches for the full SU(N) theory

 \Rightarrow Introduce label $k \in \{0, \dots, N-1\}$ with similar effect as θ term (topologically)

$$S = \frac{i}{2\pi} \int \left[\tilde{F} \wedge (F - NB) - \frac{N\theta}{4\pi} B \wedge B + \frac{Nk}{2} B \wedge B \right]$$

now: $\tilde{A} \to \tilde{A} - \frac{\theta}{2\pi}\lambda + k\lambda$

Similar action in [Kapustin, Seiberg '14] with different focus

20 / 33

Pirsa: 14110047 Page 31/50

Complete SU(N) action

Recover all branches for the full SU(N) theory

 \Rightarrow Introduce label $k \in \{0, \dots, N-1\}$ with similar effect as θ term (topologically)

$$S = \frac{i}{2\pi} \int \left[\tilde{F} \wedge (F - NB) - \frac{N\theta}{4\pi} B \wedge B + \frac{Nk}{2} B \wedge B \right]$$

now: $\tilde{A} \to \tilde{A} - \frac{\theta}{2\pi}\lambda + k\lambda$

Similar action in [Kapustin, Seiberg '14] with different focus

20 / 33

Pirsa: 14110047 Page 32/50

Pirsa: 14110047 Page 33/50

Domain walls

Fix $\theta = 0$: **Domain walls** are described by a **jump of k** on a codimension 1 surface V, the worldvolume of the domain wall (we focus on $\Delta k = 1$)

 $dk \neq 0$ leads to new contributions after gauge transformations

$$\Delta S = \frac{i}{2\pi} \int d\left[k\lambda \wedge F + \frac{Nk}{2}\lambda \wedge d\lambda\right] - \frac{iN}{4\pi} \int \left[dk \wedge (2\lambda \wedge B + \lambda \wedge d\lambda)\right]$$

 \Rightarrow For fundamental walls ($\Delta k = 1$):

$$\Delta S = -rac{iN}{4\pi}\int_{\mathcal{V}}(2\lambda\wedge B + \lambda\wedge d\lambda)$$

22 / 33

Domain wall

We want: Gauge invariance in the presence of domain walls

 \Rightarrow Introduce "boundary" field ${\mathcal A}$ with 1-form transformation

$$\mathcal{A} \to \mathcal{A} - \lambda$$

And the worldvolume action

$$S_{\mathcal{V}} = -rac{iN}{4\pi}\int\left(2\mathcal{A}\wedge\mathcal{B}+\mathcal{A}\wedge\mathcal{d}\mathcal{A}
ight)$$

⇒ Chern-Simons term at level N (necessary for gauge invariance)

23 / 33

Domain wall

We want: Gauge invariance in the presence of domain walls

 \Rightarrow Introduce "boundary" field ${\mathcal A}$ with 1-form transformation

$$\mathcal{A} \to \mathcal{A} - \lambda$$

And the worldvolume action

$$S_{\mathcal{V}} = -rac{iN}{4\pi}\int\left(2\mathcal{A}\wedge\mathcal{B}+\mathcal{A}\wedge\mathcal{d}\mathcal{A}
ight)$$

⇒ Chern-Simons term at level N (necessary for gauge invariance)

23 / 33

Flux tubes and domain walls

Another prediction by string theory: Electric flux tubes can end on domain walls [Witten '97]

- A as new field can cancel gauge non-invariant terms
- ▶ Invariant operator, for $\partial \Sigma \subset \mathcal{V}$

$$\exp\left[i\oint_{\partial\Sigma}\mathcal{A}+i\int_{\Sigma}B\right]$$

► Can end on wall

24 / 33

Pirsa: 14110047 Page 37/50

Pirsa: 14110047 Page 38/50

Generalization to $\mathcal{N}=1$ SYM

For fixed θ : **N** degenerate vacua described by gaugino condensation

$$\langle \mathsf{Tr} \lambda \lambda \rangle \propto \mathsf{N} \exp \left[\frac{2\pi i}{\mathsf{N}} k \right], \quad k \in \{0, \dots, \mathsf{N}-1\}$$

Shifting k (by 1) and θ (by 2π) have same effect

26 / 33

Pirsa: 14110047 Page 39/50

Generalization to $\mathcal{N}=1$ SYM

For fixed θ : **N** degenerate vacua described by gaugino condensation

$$\langle \mathsf{Tr} \lambda \lambda \rangle \propto \mathsf{N} \exp \left[\frac{2\pi i}{\mathsf{N}} k \right], \quad k \in \{0, \dots, \mathsf{N}-1\}$$

Shifting k (by 1) and θ (by 2π) have same effect

26 / 33

Pirsa: 14110047 Page 40/50

Topological action for SYM

For the description of domain walls only keep one parameter, here θ

⇒ Topological action:

$$S = \frac{i}{2\pi} \int \left[\tilde{F} \wedge (F - NB) - \frac{N\theta}{4\pi} B \wedge B \right]$$

With 1-form transformations:

$$B o B + d\lambda, \quad A o A + N\lambda, \quad \tilde{A} o \tilde{A} - rac{ heta}{2\pi}\lambda$$

For walls: $\Delta \theta = 2\pi$ on worldvolume \mathcal{V} (everything works out as in YM)

27 / 33

Pirsa: 14110047

Topological action for SYM

For the description of domain walls only keep one parameter, here θ

⇒ Topological action:

$$S = \frac{i}{2\pi} \int \left[\tilde{F} \wedge (F - NB) - \frac{N\theta}{4\pi} B \wedge B \right]$$

With 1-form transformations:

$$B o B + d\lambda, \quad A o A + N\lambda, \quad \tilde{A} o \tilde{A} - \frac{\theta}{2\pi}\lambda$$

For walls: $\Delta \theta = 2\pi$ on worldvolume \mathcal{V} (everything works out as in YM)

27 / 33

Pirsa: 14110047

Pirsa: 14110047 Page 43/50

Dynamics of domain walls

In topological action we cannot consider dynamics and energetical issues

- \Rightarrow Need to add more input
 - ightharpoonup heta term is total divergence of a 3-form C (Chern-Simons 3-form)
 - ▶ Introduce a kinetic term: $dC \wedge *dC \equiv F_4 \wedge *F_4$
 - ightharpoonup C couples to the worldvolume $\mathcal V$ of domain walls

Qualitatively:

$$\mathcal{L}_C = \frac{1}{2} F_4 \wedge *F_4 - \kappa k \, dC$$

 κ : non-zero constant

29 / 33

Pirsa: 14110047 Page 44/50

Dynamics of domain walls

In domain wall background ($dk \neq 0$):

$$d(*F_4) - \kappa dk = 0$$

 ${f F_4}$ jumps to a constant value and contributes to the energy density $\propto F_4^2$

 \Rightarrow Reproduces the k^2 dependence of the energy [Witten '97]

BUT: For SYM phase of gaugino condensate is dynamical

- Acts as axionic particle
- ▶ Screens F_4 , by Higgsing the 3-form C
- ► Finite tension (needed for BPS states)

30 / 33

Pirsa: 14110047 Page 45/50

Dynamics of domain walls

In domain wall background ($dk \neq 0$):

$$d(*F_4) - \kappa dk = 0$$

 ${\sf F_4}$ jumps to a constant value and contributes to the energy density $\propto F_4^2$

 \Rightarrow Reproduces the k^2 dependence of the energy [Witten '97]

BUT: For SYM phase of gaugino condensate is dynamical

- Acts as axionic particle
- ▶ Screens F_4 , by Higgsing the 3-form C
- ► Finite tension (needed for BPS states)

30 / 33

Pirsa: 14110047 Page 46/50

Pirsa: 14110047 Page 47/50

Outlook

Non-fundamental walls ($\Delta k \geq 2$): [Acharya, Vafa '01], [Gaiotto, '13]

Abelian CS term at different level (suggested by reduction from $\mathcal{N}=2$ SUSY)

vs.

Non-Abelian $U(\Delta k)$ CS term (suggested by string theory)

Possible help from:

- Fractional quantum Hall systems
- Wall junctions

32 / 33

Pirsa: 14110047 Page 48/50

Outlook

Non-fundamental walls ($\Delta k \geq 2$): [Acharya, Vafa '01], [Gaiotto, '13]

Abelian CS term at different level (suggested by reduction from $\mathcal{N}=2$ SUSY)

vs.

Non-Abelian $U(\Delta k)$ CS term (suggested by string theory)

Possible help from:

- Fractional quantum Hall systems
- ► Wall junctions

32 / 33

Pirsa: 14110047 Page 49/50

Outlook

- Relation to string theory
 - ► Identification of objects on both sides, D0-branes ↔ baryons [Shifman, Gabadadze '99], interaction of multiple walls [Shifman, Armoni '03],...
 - ▶ Wall antiwall annihilation processes
 - Strings with discrete charge
- Origin of the light wall tension (what are the degrees of freedom that build up the domain wall?)
- ▶ Dynamics ⇒ beyond topological action
- Topological phases of matter

Thank you for your attention!

33 / 33

Pirsa: 14110047 Page 50/50