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Abstract: <span>In quantum theory, people have thought for some while about the problem of how to estimate the decoherence of a quantum
channel from classical data gained in measurements. Applications of these developments include security criteria for quantum key distribution and
tests of decoherence models. In thistalk, | will present some ideas for how to interpret the same classical data to make statements about decoherence
in cases where nature is not necessarily described by quantum theory. Thisiswork in progressin collaboration with many people.</span>
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Warm-up & Motivation

A system S evolves as a...

e closed system: unitary evolution s = Us—spsUg_, 4

e open system: interaction with environment £
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e incorporating & : unitary
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Warm-up & Motivation

A system Sevolves as a...

e closed system: unitary evolution s = Us—spsUg_, 4

e open system: interaction with environment £
. . . T
e incorporating E : unitary pPs @ pg — Usp—se(ps @ /)!*))Ug]g_)b‘]g

* ignoring £: TPCPM

Useg—sE
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Warm-up & Motivation

A system Sevolves as a...

e closed system: unitary evolution s = Us—spsUg_, 4

e open system: interaction with environment £

. . . T
e incorporating E : unitary pPs @ pg — Usf«:—m'l-:(f)h' Y /)I'))Ub'[g_)b‘]g

e ignoring £: TPCPM ps —trg (Ub'id—m'f«:(/)s o PI&')U,L;Q_}S[;)
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Warm-up & Motivation

ps = Og5(ps)

Whal I8 decoherence?

7

Oss

.
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Warm-up & Motivation

What is decoherence?

S —[ Osos ]— S ps s Osss(ps)

Example: S spin-1/2 particle, £S5 spin up in x direction, ©g_,s spin
measurement in z direction
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Warm-up & Motivation

What is decoherence?

S —[ Osos ]— S ps e Osos(ps)

Example: S spin-1/2 particle, 2s spin up in « direction, ©g,s spin
measurement in z direction

() = ()

I’)H (").f-,'_)‘q([)’q)
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Warm-up & Motivation

What is decoherence?

S —( Os, s J— S ps = Os555(ps)

Example: S spin-1/2 particle, 28 spin up in « direction, ©g_,s spin
measurement in z direction

() = ()

s Os55(ps)

What does “ ©g_,5 decoheres system S " mean?
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Warm-up & Motivation

What is decoherence?

S —[ Osos ]— S ps e Osos(ps)

Example: S spin-1/2 particle, S spin up in « direction, ©g,s spin
measurement in z direction

() = (%)

I’)H (").f-,'_)‘q([)’q)

What does “ ©g_,5 decoheres system S " mean?

e Og.,g causes off-diagonal elements to vanish
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Warm-up & Motivation

What is decoherence?

S —[ Osos ]— S ps s Osos(ps)

Example: S spin-1/2 particle, 2s spin up in « direction, ©g,s spin
measurement in z direction

() = (%)

Ps Os-5(ps)

What does “ ©g_,5 decoheres system S " mean?

e Og.,5 causes off-diagonal elements to vanish

e Og.,g turns pure states into mixed states
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Warm-up & Motivation

What is decoherence?

S —( Os.5 J— S ps = Os55(ps)

Example: S spin-1/2 particle, £S5 spin up in x direction, ©g_,s spin
measurement in z direction

() = ()

s Os55(ps)

What does “ ©g_,5 decoheres system S " mean?

* Os.s causes off-diagonal elements to vanish | ot quantitative,

not operational

e Og_.¢ turn r into mix -
s s turns pure states into ed states —> will see others
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Warm-up & Motivation

What is decoherence?

S —( Os555 J— S ps = Oss(ps)

Example: S spin-1/2 particle, £S5 spin up in x direction, ©g_,s spin
measurement in z direction

() = ()

s Os55(ps)

What does “ ©g_,5 decoheres system S " mean?

* Os.s causes off-diagonal elements to vanish | ot quantitative,

not operational

e Og_.¢ turn r into mix -
s s turns pure states into ed states —> will see others

What about processes that change the type of system?
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Warm-up & Motivation

Usp—sp: Hs @ Hp

change tensor factorization
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Warm-up & Motivation

Usp'—BE Uspr—pp : Hs @Hpr = Hp @ Hp
B

Hs @ Hpr ~H~Hp @ Hg
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Warm-up & Motivation

Use'-»BE Usprprp:Hs @Hpr — Hp @ HE
B

Ignoring the environment, we get: S —( Gl = )— B
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Warm-up & Motivation

Motivating question: Performing measurements, what can we infer
about the decoherence of the channel?

S— ©s.s }— B
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Warm-up & Motivation

Motivating question: Performing measurements, what can we infer
about the decoherence of the channel?

s —( ©s+s }— B

* Party A (Alice) prepares entangled state and sends one half
through the channel to party B (Bob)
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Warm-up & Motivation

Motivating question: Performing measurements, what can we infer
about the decoherence of the channel?

S— ©s.s }— B
D) (D] s <

A A

* Party A (Alice) prepares entangled state and sends one half
through the channel to party B (Bob)
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Warm-up & Motivation

Motivating question: Performing measurements, what can we infer
about the decoherence of the channel?

—> Db

s —{ ©su8 }— B —
1B) (] 45 <

A A —

A
A

—> Da

* Party A (Alice) prepares entangled state and sends one half
through the channel to party B (Bob)

¢ Alice and Bob perform measurements and get statistics
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Warm-up & Motivation

Motivating question: Performing measurements, what can we infer
about the decoherence of the channel?

— Db

s —{ ©su8 }— B —
1B) (] a5 <

A A —

A
A

—> Da

* Party A (Alice) prepares entangled state and sends one half
through the channel to party B (Bob)

* Alice and Bob perform measurements and get statistics

e From the statistics, they infer how much correlation has been lost
—> measure of decoherence
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Warm-up & Motivation

Motivating question: Performing measurements, what can we infer
about the decoherence of the channel?

s — ©ss8 }— B —
1B) (] a5 <

A A —

A
A

We look for a relation: “decoherence” < f (statistics)
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Warm-up & Motivation

Motivating question: Performing measurements, what can we infer
about the decoherence of the channel?

S _( Os-B )_ B —
) (D] <

A A —

A
A

We look for a relation: “decoherence” < f (statistics)

To be explained in this talk:

1. What is “decoherence” in quantum theory?
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Warm-up & Motivation

Motivating question: Performing measurements, what can we infer
about the decoherence of the channel?

s —{ ©su8 }— B —
) (@4 <

A A —

A
A

We look for a relation: “decoherence” < f (statistics)

To be explained in this talk:
1. What is “decoherence” in quantum theory?

2. What is “decoherence” in a generalized probabilistic theory?
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Warm-up & Motivation

Motivating question: Performing measurements, what can we infer
about the decoherence of the channel?

s — ©sa8 }— B —
) (D4 <

A A —

A
A

We look for a relation: “decoherence” < f (statistics)

To be explained in this talk:
1. What is “decoherence” in quantum theory?
2. What is “decoherence” in a generalized probabilistic theory?

3. What is f (statistics) ?
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Assume Quantum Theory

We are given a state ps and a channel Og_, .

S —( OsB )— B
PAS <

A A

Purify ps to pas. How much of the correlation in pas is lost?
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Assume Quantum Theory

We are given a state ps and a channel Og_,p .

S —( Os-B )— B
PAS <

A A

Purify ps to pas. How much of the correlation in pag is lost?

Measure of decoherence: Coherent Information (Schumacher, Nielsen)
[(ps,Os-p) = H(B), - H(AB), = -H(A|B),
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Assume Quantum Theory

We are given a state ps and a channel Og_,p .

S —( Os-B )— B
PAS <

A A

Purify ps to pas. How much of the correlation in pas is lost?

Measure of decoherence: Coherent Information (Schumacher, Nielsen)
[(ps,Os-p) = H(B), - H(AB), = -H(A|B),

» Measure of “non-classicity” of pap = la @ Os,5(pas)

e Related to the channel capacity (Lloyd-Shor-Devetak Theorem)
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Assume Quantum Theory

S —( O©s_nB )— B
PAS <

A A

Coherent Information: I(ps,©Os-p) = —H(A|B),

Asymptotic quantity. For operational statements for finitely many
uses of channel: single-shot quantity.
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Assume Quantum Theory

Coherent Information: I(ps,©Os-p) = —H(A|B),

Asymptotic quantity. For operational statements for finitely many
uses of channel: single-shot quantity.

Consider Stinespring dilation Vs pr of ©ssp
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Assume Quantum Theory

Hin(A|E), = maxsup{A € R | pap <2 My ® ot
TE
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Assume Quantum Theory

][m'm(A H)

p =maxsup{A € R | pap <2 My ® ot
D]

eon

Consider pas = |®)(®|< , n EPR pairs.
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Assume Quantum Theory

Hpin(A|E), = maxsup{A € R | pap <2 A ®op)
oL

Consider pas = |P)(P|5% , n EPR pairs.
Then Huin(A|E), ~ number of EPR pairs that 4 and B can recover
(Hayden et al., Berta et al.)

Contribution: ,,,(A|F), can be estimated without iid
assumption (resource problem, no decoherence
estimation)
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Assume Quantum Theory

—E—» X or Z or nothing

— A ]— X or Zor nothing

(-)S—>B

— ~X]— X or Zornothing
\. J

No iid assumption!

D) (D[

X or Z or nothing

[ X} Xor Zornothing

[ X }*> Xor Zornothing
# same result in X

# different result in X

~ # same result in Z

4 different result in Z

Both measure X: Determine dx =

Both measure Z: Determine dz

Conclude Huin(A|E), 2 n(l —h(dx) — h(d2)) , where p unmeasured
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Assume Quantum Theory

The test of the form  H,,i,(A|E), Z n(l = h(dx) — h(dz))
where p’ unmeasured, is...

e good for resource estimation

e unsuitable for channel decoherence analysis because
it does not determine H,,in(A|E), for the whole
system that went through the channel

To estimate the channel decoherence, we make the iid
assumption.
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Assume Quantum Theory

Assume that channel is iid —> estimate probabilities

1Y (D] A <—( Os- B
1) (D 4 <_( Os- B

Pr|a,bl0,0]
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Assume Quantum Theory

Assume that channel is iid —> estimate probabilities

|PY(P|as < C ) (a,b) f{}

R G * (oh

B (@05 <

“I)M‘H/K.‘; <_(

Pr|a,bl0,0]
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Assume Quantum Theory

Our channel decoherence estimation is of the form:

Assume that there are measurements such that

pGASH — Z Z Prla,blx,y] > A

Ly a,b
athb=wy

lIlnin(A I'))/! 2 /(/\)

Why is this interesting?

Page 45/67



Pirsa: 14100121

Assume Quantum Theory

Our channel decoherence estimation is of the form:

Assume that there are measurements such that

pGHSH — Z z Prla, bz, y| = A

vy a,b
apb=wy

lIlnin(A“'j)p 2 /(/\)

Why is this interesting?
A decoherence model may predict Hy,in(A|E), < A —> ruled out

e For f(A) in quantum theory and proposed models to test: Stay tuned!
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Beyond quantum theory

Beyond quantum theory ~ generalized probabilistic theory (GPT)
GPT ~ abstract state space

Definition: An abstract state space is a triple (V, V*, u), where

o V finite-dimensional real vector space
e V' coneinV

e U linear functional
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Beyond quantum theory

Beyond quantum theory ~ generalized probabilistic theory (GPT)
GPT ~ abstract state space

Definition: An abstract state space is a triple (V, V*, u), where

V finite-dimensional real vector space
conein V

linear functional
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Beyond quantum theory

Measurements:
o set {fi, ..., fu} of effects. fi(w): probability for outcome k

| QS

Quantum theory: (Herm(#H), Pos(H), tr) V
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Measurements:
o set {fi, ..., fu} of effects. fi(w): probability for outcome k

\ (s
Quantum theory: (Herm(H), Pos(H), tr)
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Beyond quantum theory

Measurements:
set {fi, ..., fu} of effects. fi(w): probability for outcome k

effects: linear functionals f in V' s.t. 0 < flw) < 1 forall w in 2

this gives the set of effects £
measurement: set {f, ..., fu} € € such that Z./}a:(w} = 1
‘[‘.

\ (sl
Quantum theory: (Herm(H), Pos(H), tr)
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Beyond quantum theory

Tripartite scenarios in our framework:
* We do not specify a tensor product structure
* Make no assumption about how systems combine
» [nstead. take overall state space (V, V', u)

» Specify parties via transformations they perform

Definition: A iripartite scenario is a quadruplet
Sapc = ((V,VTu), Ta, T, Te)
where (V, V' wu) is an abstract state space and where

Ta, T, To CH{E :V - V| E(Q) C Q%)

such that transformations of different parties commute, i.e.

TATp =TpT, forall Th € Ta, 1 € Tp etc.
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Beyond quantum theory

Definition: A tripartite scenario is a quadruplet
‘S'."\ BC — ((V-. V+* “)1 7?1: 7-13: 7?')
where (V, V', u) is an abstract state space and where

Ta, T, To C{E:V = V| EQ) C Q%)

are sets of local transformations such that transformations of different
parties commute, i.e. Talp =TTy forall Ty € Ta, Ty € Ty etc.
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Beyond quantum theory

Definition: A tripartite scenario is a quadruplet
Sapc = ((V,VT u),Ta, Ts, Tc)
where (V, V', u) is an abstract state space and where
Ta. T, To C{E:V = V| EQ) C Q%)

are sets of local transformations such that transformations of different
parties commute, i.e. TWlp =TTy forall Ty € Ta,Tp € Ty etc.

A local instrument is a finite set T, C Tx such that »_ u(Ea(w)) =1
for all win Q2 EA€Tn

Local instruments give rise to local measurements:
{fuoEa| Fa €Iy} isameasurement, and
{fuolpaoEp | Ea €Ty EpgeIp} isacompositelocal measurement
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Beyond quantum theory

Definition: A tripartite scenario is a quadruplet
Sapc = ((V,Vt u), Ta, Ts, Tc)
where (V, V', u) is an abstract state space and where
Ta. T, To C{E:V = V| E(Q) C Q%)

are sets of local transformations such that transformations of different
parties commute, i.e. Talp =TTy forall Ty € Ta, Ty € Ty etc.

A local instrument is a finite set Z4 C T4 such that Z u(Ba(w)) =1
for all win Q2 Es€Za

Local instruments give rise to local measurements:
{fuoEa| Fa €Iy} isameasurement, and
{fuolproFEp | Ea €Ty EpgeIp} isacompositelocal measurement
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Beyond quantum theory

Want to find relation similar to Hy,in(A|E), > f(A) for GPTs.

Problem: What is Hyin(A|E), = maxsup{A € R | pap < 2 Ay ® o}
in our framework? o

Take a more inspiring expression:

Hin(AlE), = —logda max F2Dpa,14 @ A (pag))

B A

g S—BFE B B

Apsa(par))

A A A
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Beyond quantum theory

— A7

B Apsar(par))

A A

Hyin(AlE), = —logda max F2(®an, 04 @ Apn(pagr))
E— A

¢ Reduced states & transformations between different parties undefined

e Solution: Purify!

e Get Huin(AlE), log da max max F2(®aa @ opar, (lap @ Uc)pape(lap @ UL))

Jer T par
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Beyond quantum theory

SY

A

Huwin(A|E), = —log d 4 max max If""‘(‘lm.,p @opar,(lap @ Uc)papc(lap & U(I))

Uec opan
This inspires us to define our decoherence quantity:

Dec(A|C), := —log sup sup F*(y, Te(w))

ToeTo yvew e
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Beyond quantum theory

A

Hin(A|E), = —log d 4 max max If'z(‘lm‘,p @opar,(lap @ Uc)papce(lap & U(I))

d Uec: opan
This inspires us to define our decoherence quantity:

Dec(A|C), := —log sup sup F?(¢, Te(w))

ToeTo ywew e

where fidelity is lowest induced classical fidelity F'(w,7) := Mil(lf‘w F(w,r|M)

Pirsa: 14100121 Page 60/67



Beyond quantum theory

v € Wac: states with “maximal entanglement between A and C'”

"o

* We give two definitions: “maximally correlated”, “maximally non-local”

* This leads to two versions of Dec(A|C),,

For every binary local instrument [, =
{EY, EL} € Za, there is a binary local in-
strument Io = {EQ,EL} € Ze such that

= €N {
wBEY B () + uEL EL(Y) = 1.
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Beyond quantum theory

v € Wac: states with “maximal entanglement between A and C'”

LE T

* We give two definitions: “maximally correlated”, “maximally non-local”

* This leads to two versions of Dec(A|C),,

For every binary local instrument [, =)

{F“ Ey} € Za, there is a binary local in-

strument I = {EQ,EL} € Ze such that
20 100 1ol _

ully Be () +ub 3y En () =

P €

For (my pair of l)inm'y instruments 19
{E, A b Ix = {E} 1} € Ty that

(l])rl])](‘ t() d(hl(‘vv Py s > /\ € [0,1], there i

0[0 14110
a p;m' of binary instruments I, = {l](.| J(,I b

011 p1l1
A= {1](.‘ , J(.‘ } € Z¢ achieving ;)(1'(',‘“”.

Pirsa: 14100121 Page 62/67



Beyond quantum theory

Dec(A|C), := —log sup sup F*(i, T (w))
ToeTo YeW 4¢

Finding a bound Dec(A|C), > f(N):
¢ Assume that there are local instruments
(S, BN (EN By e 74

\O10 110 011 1] -
{/‘*tf];“ ) "’n| H {hn| , ["n‘ be1p

| s |x by
such that 7 Z Z u ;‘_‘| ER (w) = A

T,y b
ahb=mxy
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Beyond quantum theory

Dec(A|C),, := —log sup sup F*(¢,To(w))
T €T YeEW o

Finding a bound Dec(A|C), > f(N):
e Assume that there are local instruments
(S, BNy (BN By e 74
(ER° By} By By') € T

] s |@ by
such that DD wE4T ENY (w) > A

T,y b
ahb=mwxy

e Use classical relations to bound Dec(A|C),, by trace distance quantity
e Use fact that resulting distributions are non-signalling

e Solve resulting linear program using software
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Beyond quantum theory

Dec(A|C), := —log sup sup F*(¢,To(w))
T €T VeEW o

Finding a bound Dec(A|C), > f(N):

|
bound on D{E(Z(A C):,
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Beyond quantum theory

Dec(A|C), := —log sup sup F*(1), T (w))
ToeTo YeW 4¢

Finding a bound Dec(A|C), > f(N):

! bound on Dec(A|C),,

e Non-trivial for A > 3/4 —> best you can hope for
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