Title: Flux Compactifications Grow Lumps

Date: Oct 07, 2014 11:00 AM

URL: http://pirsa.org/14100081

Abstract: $\langle span \rangle$ The simplest flux compactifications are highly symmetric $\hat{a} \in \text{``aq-form flux is wrapped uniformly around an extra-dimensional q-sphere. I will discuss a family of solutions that break the internal <math>SO(q+1)$ symmetry of these solutions down to $SO(q)\tilde{A}$ — Z_2 , and show that often at least one of them has lower vacuum energy, larger entropy, and is more stable than the symmetric solution. I will describe the phase diagram of lumpy solutions and provide an interpretation in terms of an effective potential. Finally, I will provide evidence that the perturbatively stable vacua have a non-perturbative instability to spontaneously sprout lumps; generically this new decay is exponentially faster than all other known decays of the model. $\langle span \rangle$

Pirsa: 14100081 Page 1/31

Flux Compactifications Grow Lumps

Claire Zukowski U.C. Berkeley

Alex Dahlen and CZ [1404.5979] Kurt Hinterbichler, Janna Levin and CZ [1310.6353]

Perimeter cosmology seminar, October 7, 2014

Pirsa: 14100081 Page 2/31

Outline

- The Toy Model
- Symmetric Solutions
 - Properties
 - Stability
- Warped Solutions
- Effective Potential Description
- Non-Perturbative Decays
- Future Work

Pirsa: 14100081 Page 3/31

Pirsa: 14100081 Page 4/31

The Toy Model: Motivations

"Simplest model of stabilized extra dimensions"
(Repulsive flux + attractive curvature can form stable minimum)

- One of several toy models often invoked to gain intuition about the much more complicated string landscape
- We should fully study this simple model, then try to understand if its physical implications carry over to the more general case
- An extremely simple physical system (around for > 50 years!), with some rich and tractable corners of phase space that remain to be understood!

Pirsa: 14100081 Page 5/31

The Toy Model

The take-home message:

Even this "simplest" model is actually far from simple. There are symmetry-breaking effects whereby a symmetrically shaped internal manifold generically develops lumps, either perturbatively or non-perturbatively.

Pirsa: 14100081 Page 6/31

Symmetric Solution

$$S = \int d^D x \sqrt{-g} \left[\frac{1}{2} M_D^{D-2} \mathcal{R} - \frac{1}{2q!} F_q^2 - \Lambda_D \right]$$

Direct product total space \Rightarrow both components are Einstein spaces

$$\mathcal{M}_p \times S^q$$

"Freund-Rubin model"

Symmetric Solution

$$\underline{\text{Metric}}: \qquad ds^2 = L^2 ds_p^2 + R^2 d\Omega_q^2$$

Effective c.c.:
$$\frac{\Lambda_{\text{eff}}}{M_p^{p-2}} = \frac{(p-1)(p-2)}{2L^2}$$

Conserved flux:
$$n \equiv \int_{S^q} F_q = \rho \operatorname{Vol}_{S^q}$$
flux number flux density
(quantized)

Symmetric Solution: Effective Potential

Treat sphere as fixed shape and vary radius as field R:

$$\frac{V_{\rm eff}(R)}{M_p^p} \sim \left(\frac{1}{R}\right)^{2q/(p-2)} \left[\frac{n^2}{R^{2q}} - \frac{1}{R^2} + \Lambda_D\right]$$
 conversion from D- to p-dimensional Planck mass (repulsive) (attractive) (repulsive)

Pirsa: 14100081 Page 9/31

DeWolfe, Freedman, Gubser, Horowitz, Mitra (2002) Bousso, DeWolfe, Myers (2003) Hinterbichler, Levin, CZ (2013)

Page 10/31

Symmetric Solution: Stability

Metric:
$$g_{MN} + h_{MN}$$

Flux: $A_{\alpha_1...\alpha_{q-1}} + \delta A_{\alpha_1...\alpha_{q-1}}$

Background Fluctuation

The procedure:

- Expand fluctuations in complete basis of forms
- Expand action to quadratic order
- Integrate over internal manifold
- Diagonalize, then read off spectrum and stability

Shape mode sector: Expand in spherical harmonics $Y_{lm}(\theta,\phi)$

Pirsa: 14100081

Symmetric Solution: Stability

 h_{ℓ} and a_{ℓ} mix! \rightarrow physical shape mode is linear combination $\psi_{\pm}^{(\ell)}$

 $\psi_{-}^{(\ell)}$ is the "danger mode" that sometimes has negative mass squared

\Rightarrow shape mode instability

For $\psi_{-}^{(\ell)}$, flux density larger where radius is larger (opposite for $\psi_{+}^{(\ell)}$)

Pirsa: 14100081 Page 11/31

Stability

Danger mode has negative mass squared iff:

$$\rho^2 R^2 = \frac{1}{p-1} \left[(q-1)(D-2) - 2\Lambda_D R^2 \right] > \frac{D-2}{2(p-1)(q-2)} \left[\ell(\ell+q-1) - 2(q-1) \right]$$

Pirsa: 14100081

Warped Solutions Kinoshita, Mukohyama (2012)

$$S = \int d^D x \sqrt{-g} \left[\frac{1}{2} M_D^{D-2} \mathcal{R} - \frac{1}{2q!} F_q^2 - \Lambda_D \right]$$

A new set of lumpy, warped solutions can be found numerically for $q \geq 3$!

$$\mathcal{M}_p \times_{\mathrm{warped}} (\bigcirc)$$

Let's explore their physics...

Pirsa: 14100081

Warped Solutions

Metric:
$$ds^2 = \Phi(\theta)^2 ds_p^2 + R(\theta)^2 d\Omega_q^2$$

Flux ansatz:
$$F_{\alpha_1 \cdots \alpha_q} = Q\Phi^{-p}(\theta)\epsilon_{\alpha_1 \cdots \alpha_q}$$

To find these solutions, shoot numerically from the equator varying Q, Λ_D and imposing regularity at poles, evenness about equator

$$SO(q+1) \to SO(q) \times \mathbb{Z}_2$$

Warped Solutions: Sample Solutions

Pirsa: 14100081 Page 15/31

Warped Solutions: Game Plan

- Consider the number of extrema as a classifier.
- For simplicity, we restrict to the 1 extremum solutions.
- To study these solutions, we use numerical techniques to map out their phase space. Later, we will return to motivate this picture using an effective potential description.
- First we parametrize the solutions using a convenient order parameter, the ellipticity.

Pirsa: 14100081 Page 16/31

Warped Solutions: Ellipsoidal Case (1 extremum)

Order parameter: Ellipticity

$$\varepsilon \equiv \frac{2 \times (\text{distance from north to south pole})}{\text{distance around equator}} = \frac{2 \int_0^{\pi} R(\theta) d\theta}{2\pi R(\theta = \pi/2)}$$

M&M

Football

 $\varepsilon < 1$

 $\varepsilon = 1$

 $\varepsilon > 1$

Warped Solutions: Ellipsoidal Case

(1 extremum)

<u>Cartoon Distillation</u>:

Pirsa: 14100081 Page 18/31

Warped Solutions: Ellipsoidal Case

(1 extremum)

Full phase diagram:

 $arepsilon rac{arepsilon}{2}$ $q \geq 4$ $\Lambda_D > 0$ $\lambda_D > 0$ $\Lambda_D > 0$ $\Lambda_D < 0$

Scaling properties of EOM:

$$\Lambda_D \to \alpha^{-2} \Lambda_D$$
,

$$Q \to \beta^{p-1} Q \qquad (\Lambda_D = 0)$$

Pirsa: 14100081

Warped Solutions: Ellipsoidal Case

(1 extremum)

The underlying principles:

- When the $\ell=2$ 'danger mode' has a negative mass squared, the ellipsoidal solution is M&M shaped and energetically favored. When the mode has a positive mass squared, the ellipsoidal solution is football-shaped and energetically disfavored.
- The $n \to 0$ behavior is independent of Λ_D
- \bullet Each Freund-Rubin solution is accompanied by a single ellipsoidal solution with the same flux n

Pirsa: 14100081 Page 20/31

Warped Solutions: Ellipsoidal Case (1 extremum)

1 extremum solution $\Leftrightarrow \ell = 2$ instability of the symmetric solution

Pirsa: 14100081 Page 21/31

Warped Solutions: Higher- ℓ

$$\Delta(\Lambda_{\mathrm{eff}}/M_p^{\ p}) > 0$$

$$n > n_{c, \ell=4}$$

Same principles hold!

Conjecture:

 $\ell-1$ extremum \Leftrightarrow solution

 ℓ -mode instability of the symmetric solution

Effective Potential Derivation

Now that we've mapped out the phase space of some warped solutions, we will argue for a neat effective potential picture that encapsulates the physics.

Pirsa: 14100081 Page 23/31

Effective potential in shape direction:

Critical value of n where symmetric flips from positive to negative mass squared + fixed asymptotics

 \Rightarrow New (for us, lumpy) solutions are "ejected"

Pirsa: 14100081 Page 24/31

Warped Solutions: Effective Potential Asymptotics:

- $V \to +\infty$ (M&M) and $V \to -\infty$ (football)
- Turns around in either or both directions
 If so, should have found evidence of additional solutions
- Finite asymptote in either or both directions

 Long flat section with no symmetry to protect it, we find unlikely

Pirsa: 14100081 Page 25/31

Asymptotics:

- $V \to +\infty$ (M&M) and $V \to -\infty$ (football)
- Turns around in either or both directions

 If so, should have found evidence of additional solutions
- Finite asymptote in either or both directions

 Long flat section with no symmetry to protect it, we find unlikely

Pirsa: 14100081 Page 26/31

<u>Summary</u>: Consistent effective potential description that captures all the physics of our phase diagram

Pirsa: 14100081 Page 27/31

The classical stability of the symmetric solution determines the form of the lumpy solutions: their shape, stability and whether they are dominant or subdominant.

Pirsa: 14100081 Page 28/31

Non-Perturbative Instabilities

New non-perturbative instability: Tunnel to infinite football!

Typical mass squareds in shape direction are a couple orders of magnitude smaller than in total-volume direction.

symmetric solution stable $(n_c < n < n_{\text{max}})$

⇒ Shape-mode tunneling is fastest decay (vs. e.g. decompactification).

$$p=q=4, \ \Lambda_D>0$$
:

- 97% of FR perturbatively unstable
- 2.97% decay to footballs

Pirsa: 14100081 Page 29/31

Future Work

- Study spontaneous symmetry breaking along different axes at each point in space-time, and whether this leads to topologically nontrivial configurations
- Study the evolution in this shape direction potential further from sphericality
- Generalize to some more realistic models
- Do the full stability calculation around the warped product solutions.

Pirsa: 14100081 Page 30/31

Conclusions

- There exist additional lumpy solutions to the Freund-Rubin equations that can be more stable than the symmetric branch.
- There is a symmetry-breaking effect where the internal sphere generically rolls to these new solutions.
- Even when the symmetric solution is stable, we found new non-perturbative decays to lumpiness, including to the infinite football-shaped direction. These are the fastest-yet-known decays for this model.
- We derived a phase diagram and argued all physics is neatly encapsulated by a shape-direction effective potential.

Pirsa: 14100081 Page 31/31