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Abstract: <span>The holographic RG of Anti-De Sitter gives a powerful clue about the underlying AdS/CFT correspondence. The question is
whether similar hints can be found for the heretofore elusive holographic dual of De Sitter. The framework of stochastic inflation uses
nonperturbative insight to tame bad behavior in the perturbation series of a massless scalar in DS at late times. Remarkably, this fully quantum
system loses phase information in the leading approximation, but retains a probabilistic character and allows for a controlled prediction of late time
Green's functions. Recasting this as a "resummation of time", we wish understand whether the distributions that result can be thought of as an
attractive UV fixed point of a theory<br> living on a spacelike dice of DS. We derive stochastic inflation via the wavefunctional approach to
Quantum Field Theory. This alows for the straightforward implementation of corrections to the original framework.</span>
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WHY DE SITTER?

- * De Sitter puts us face®o-face with some of the toughest
~ challenges in quantum gravity,

-* DS contains causal horizons, which in tum give us an
entropy-area relation,

A
P

*IFS ~ log(N), what are the microstates, why are they finite?

{'Mn SLISY to fldde us in DS
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ISE BEOUNDARIES OF iSiS
SR

* The horizon that gives us N 7
entropy also confuses the N ,’
i N 4
boundary formulation. © S e ©
< 0 -
N/
* Should we formulate the theory g s 5
=
on the global boundary!? 2 P = 2
horizon? complimentarity? / \
/’ N
/ N
» Do we need to understand the ]-

emergence of a timelike

I oh Penrose diagram of DS
IMension!

Past and future infinities are spacelike
Observer only has causal contact in triangle
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B CF | CORRESPONDENGES

A | ! p
L e )
dshas @(d!‘ dz;_, — dz*)
* Boundary possesses SO(D, 1) symmetry, the conformal group for R

* There are complications:
* Where to define!

* Naive analytic continuation gives wrong DS ground state, complex
anomalous dimensions

« CFT is non-unitary, best formulation?
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CFT for ourselves, strong
hint for it in holographic RG.

* Truncating or elongating AdS
corresponds to local
operator running on
boundary.

an0
In holographic RG, we can mo

the blue brane at the cost of
loeal runnins
* In flat space, we would il

induce non-local effects,

of brane operators

T A oD YU
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CFT for ourselves, strong
hint for it in holographic RG,

* Truncating or elongating AdS
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In holegraphic RG, we can mow
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* In flat space, we would running of bran perators
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HOLOGRAPHIC RG IN DE
SITTER?

* The analog of the radial direction in AdS is the timelike
direction in DS,

* We are thus looking for a theory that exhibits the
“resummation of time.”

* Such an example has long been known, Stochastic Inflation
(Starobinsky, 1986).
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DS/CFT CORRESPONDENCE?

* Perhaps D5 has a CFT dual |n analogy with its cousin, AdS

y? = di)

o [l
L th)’(

s ﬁ#]_‘-(lﬂz - rh"f_l - rl:-‘)

* Boundary possesses SO(D, 1) symmetry, the conformal group for R*",
* There are complications:
* Where to define!

* Naive analytic continuation gives wrong DS ground state, complex
Y B B 8 |
anomalous dimensions

» CFT is non-unitary, best formulation?
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STOCHASTIC INFLATION

* As we will see, light scalays in DS spoil perturbation theory,

* Starobinsky used the insight to recast theory as one of classical
statistical mechanics.

» One can get nontrivial agreement with QFT results

(&"(I.i‘] )wv = (2n = 1) (:‘:: llm)-{l - :(n +1) '\_ In"a

RUEY

el o A ]
[t Qm(.'l.m‘ 1+ 1700 4 2200 'H][ SosT I||'-:I ) }

* As our first rr_"_‘.ult, we derive Stochastic Inflation Pure i. with
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: "
(¢'-(|‘£] )m = (In = 1)t (:‘:, hm) {1 - 1;tu 1) :“;\"‘ In*a

L7 e A ]
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IO CHAS T1C INFLATRIGR

* As we will see, light scalars in DS poll perturbation theory.

» Starobinsky used the insight to recast theory as one of classical
statistical mechanics.

» One can get nontrivial agreement with QFT results
<c_,-":2"(t,;zr') >\_H. = (2n - 1!l (::r; Ina.) {l Z(n 1) 3(;\.”2 In®a

TL r ’ . A p e
f 2:“(3571'" + 170n* + 225n 4 74)[367{‘3 lnzerz f }

From gr-qc /0505115

* As our first result, we derive Stochastic Inflation purely within QFT.
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ISE BEOUNDARIES OF iSiS
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IR DIVERGENCE

* Let's compute the fre® theory two-point function

H(1 + K*n?)

('n"k'iﬁ - f-) o ke

* What if we go to position space?

t”C
() eh(1)) ~ [_I\T“"’l’»(’~'rf\') - log (k)

* How can we compute given IR pathology?
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SHOULD WE BE SURPRISED?

* We're asking about th number of arbitrarily soft quanta
generated over the infinite lifetime of pure De Sitter;

Al \/ PP
. = m* - ;J
AEAL <1

LAt 2k o
dt's o " = fradin, - ~Hat
[ 2E(F) = 21 )

* Thus, for k<Ha, we get fluctuations that persist
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BEIOUL D WE BE SURPRISERE

* We're asking about the number of arbitrarily soft quanta
generated over the infinite lifetime of pure De Sitter.

AFE
AFEAt <1
AL 2 o
Bt = = tem !
/ d2E(H) = 2 (1 - e~HAY

* Thus, for k<Ha, we get fluctuations that persist
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WHY MASSLESS SCALARS?

* Only scalar field theory has the aforementioned IR
divergence, why!
,}jr_'g,,ﬁiii.;-” =050
* Fermions and vectors persist if produced, but their rate is
suppressed

dn dn dn |

alspace rate
T T ”Hil pace rate)
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CURING THE IR DIVERGENCE

* Iwo of the assumptiohs in our selection of Bunch-Davies
Involved the recovery®f a Minkowski-like limit in the UV,

* The third was the imposition of DS invariance. Let's break this
mildly with k-dependence in our mode function.

() b(y) /lklﬂ" Pl fH\ T ~ finite
|©2) = Nntn[ [M“ "\usl))

* We get a state with regulated population in IR.
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CURING THE IR DIVERGENCE

* [wo of the assumptioks in our selection of Bunch-Davies
Involved the recovery®fa Minkowski-like limit in the UV,

* The third was the imposition of DS invariance. Let's break this
mildly with k-dependence in our mode function,

& A
(p(z)p(y)) ~ /n!kllk--’-t_—'ﬁﬁ-l ~ fdk% ~ finite

1 a1 Pk 12
|2) = N oxp "E / rilk!-\:n.}; “ |BD)

* We get a state with regulated population in IR,
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EBERING [HE IR DIVERGENES

* Two of the assumptions in our selection of Bunch-Davies
iInvolved the recovery of a Minkowski-like limit in the UV.

* The third was the imposition of DS invariance. Let's break this
mildly with k-dependence in our mode function.

i 8
o(x)p(y)) ~ dkM ~ (Zk:k— — finite
k k

l ¥ p ')) +0
[ Q=N exp {E / (/"A'm—i(rl_.“] IBD)

(845

* We get a state with regulated population in IR.
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SHOULD WE BE SURPRISED?

) number of arbitrarily soft quanta
generated over the infinite lifetime of pure De Sitter;

2
AFE = \fm"i 1 ’_j
a

ABAL < |

LAl ol
[ di"2B(t') = _‘y’;“ UL
t o

* Thus, for k<Ha, we get fluctuations that persist
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CURING THE IR DIVERGENCE

* Two of the assumptiohs in our selection of Bunch-Davies
Involved the recovery®f a Minkowski-like limit in the UV,

* The third was the imposition of DS invariance. Let's break this
mildly with k-dependence in our mode function.
;A

(p(z)p(y)) ~ /dklﬂL';—ﬁ"—l ~ fflklk- ~ finite

[2) = N exp "l— [‘£:1,|:&‘,,:?] [BD)
1A oy %

* We get a state with regulated population in IR,
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CARTOON HISTORY OF AN
IR-SAFE UNIVERSE

* In-a more physical piclure, the regulation arises from starting
De Sitter at a finite tifMe.

* Modes that never get inside comoving horizon are frozen and

safe,
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CARTOON HISTORY OF AN
IR-SAFE UNIVERSE

* In a more physical piclure, the regulation arises from starting

De Sitter at a finite tife.

E O -K

* Modes that never get inside comoving horizon are frozen and

safe,

Pirsa: 14100051

Page 27/54




POSITION SPACE AT LAST

* We can now take the|Fourier transform and get a finite result.

2 nn' - ’ 212
(b(z)p(y)) = H [m + log [kip (An* —1r?) I

* For simplicity, we calculated with x and y comoving, What
about fixed physical separation? (rynys = a Feom)

(d(x)p(y)) ~ H* log(a) = H*
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FOSITION SPACE Al EASH

* We can now take the Fourier transform and get a finite result.
. . 2 nn' 1.4 2 2\2
(¢(z)o(y)) = H T + log [kir (An* —7%)%]

* For simplicity, we calculated with x and y comoving. What
about fixed physical separation?! (rphys = a r'com)

(p(x)(y)) ~ H* log(a) = H"1
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POSITION SPACE AT LAST

* We can now take thelFourier transform and get a finite result.

(@)h(w)) = H? | 22— 4 og [k (An? — r2)?]

An? — 1

* For simplicity, we calculated with x and y comoving, What
about fixed physical separation? (rphys = a reom)

(d(x)p(y)) ~ H* log(a) = H*
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FERTURBATION THECISS
BREAKS DOV

No matter how
small A,
eventually
overwhelmed

* We add interactions (fol

concreteness >\(7P|). Q

* Eventually theory becomes
nonperturbative for
arbitrarily small coupling.

[
Q
* How to regain control? @
\
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STAROBINSKY'S INSIGHT

* IR modes of the theory are what give us trouble.

* However, as we will see, IR sector undergoes classical
evolution, This allows us to solve it.

* Starobinsky made an ad hoc cut between QFT and stat mech
Can we understand this better?
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CLASSICAL INTHE IR: FREE

* Many ways to phrase|classicality, but we take it to mean that
WHKB approximation [stationary phase) holds

i " k2
Bl =exp|= | ks i)
Vupld] = exp [2f' ft”,”“ i ™ ,;_,,]
» What if we approximate evolution with stationary phase?
|.'i'\"f-”'l - j -D"J 1 .']i"‘J: ”1 ’ ' '~‘-. n |f|

- 'f‘lll”. f(f'f". “’. ””‘"-" t[@arin’ )
* Checking against Bunch-Davies, we recover leading behavior at
late times,

) Lk ;
D] wmamimet = wxp |4 [ A (L 4 ikl )

i Iy
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@IEA5SICAL IN THE IRAFIRIESS

» Many ways to phrase classicality, but we take it to mean that
WKB approximation (stationary phase) holds

(

- il ks
/y Al — av hell d1, e :
Y IH)[(-?] EXp [2 / d” k _H'“)‘!/(:l i k) (»"A-f.)—-A.]

* What if we approximate evolution with stationary phase?

» Checking against Bunch-Davies, we recover leading behavior at
late times.

i v l 1‘2 s 3
“-‘I"‘l(r";)l.-crnu cl = €EXP [’ / {F};"; {"r.)i-‘r"‘r) A(l = 7 'f/'i”l: Tl )

H?n
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EIFASSICAL N FFIEHIES
INFFERACTINE

We want to make statements about a theory that isn't just interacting but

e Talal: i1 11t o
|\L||.‘I'l'|"<| /()L

* We map our field theory into a |-D anharmonic oscillator with time-varying

mass. p2 K 2
H=—+mzx
2m

When does WKB approximation hold? /3
I
PTP TP . — TP > ( = ) N
\.//\m

zrp > /A6
Under conservative assumptions, how much of state fails this condition?

¢ ‘;/\I,-"t; o
| ”’;N /e G|

| dx||?

~ Hn
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UV/IR DECOUPLING

* Pathology of perturba# el
theory comes from IR of o do)
theory

* Diagrams with all IR modes
dominate calculations

* Leading approximation only
considers all-IR interactions
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UV/IR DECOUPLING

* Pathology of perturbation
theory comes from IR of
theory

* Diagrams with all IR modes
dominate calculations

* Leading approximation only
considers all-IR interactions

Particle Number Density vs. Time

in Bunch=Davies
(k=comoving = 1)

N

(14

50

40
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20

10

20 15 1.0 0.5 00"

For fixed k, two-Roint function
dominated by state with lacge particle number,
|

Kohys << H
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APPROXIMATING THE MASTER
EVOLUTION

» Can we approximate wayvefunctional evolution to give ourselves a
calculable theory?

l{phit + At] = / Dihog Depok ] Dy Db [ {ho }; 1]

5 ﬂlhllllll'lllq‘”-‘ |'lﬂ|'.’llllll l"’l »‘r"q r'l{:""lnull |'1"|f JI

» UV modes continue to be perturbative, as first approximation, we
them to be free,

I;r“,iﬂl:"‘f | llfl VD, hard [Pk, A ,-’k” / -[-],I‘}”_' / IJIJ']"H“1{"E),‘|:‘I‘II‘l n iyt
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FIRSTFORDERNESS

* Besides UV perturbatlvity and IR semiclassicality, need one
further approximatiorgfor calculability, IR first-orderness

*In free theory, superhorizon modes "freeze,” can we neglect
acceleration?

Dhoms o HnvVk
Bl =0)

, <03
YIMS

* Theory isn't free, but time-scale of nonperturbatvity is:*

“infi *Potential bacomes in portant well
r:: \/\lj res theary first-orderness

’IIIIII part
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FIRS T-ORDERNESS

* Besides UV perturbativity and IR semiclassicality, need one
further approximation for calculability, IR first-orderness

* In free theory, superhorizon modes “freeze,” can we neglect

acceleration?
(ff)‘i{:\,]s OC [II/\/Z

Aderr(n =0) 0.3

PRMS

* Theory isn't free, but time-scale of nonperturbatvity is:*

1672 *Potential becomes important well after
tnon—pert < free theory first-orderness is established
VAH n=-I/H

Perturbative potentials don't spoil first-
order behavnior
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FIRSTFORDERNESS

* Besides UV perturbatlvity and IR semiclassicality, need one
further approximatiorfor calculability, IR first-ordermess

* In free theory, superhorizon modes "freeze,” can we neglect
acceleration?

Dims ”U\ﬁ‘:
%I'(n )

g —= 240),3
YRMS

* Theory isn't free, but time-scale of nonperturbatyity is:

“iﬂu *Patential becomes important well aftes

~ VAl

"IIIIII “purt
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FIRSTFORDERNESS

* Besides UV perturbativity and IR semiclassicality, need one
further approximatiorgfor calculability, IR first-orderness

*In free theory, superhorizon modes "freeze” can we neglect
acceleration?

Dhovs o< HnVk

1Gr?
VAV

’IIIIII park
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FIRSTFORDERNESS

* Besides UV perturbatlvity and IR semiclassicality, need one
further approximatiorgfor calculability, IR first-ordern

€55

* In free theory, superhorizon modes "freeze,” can we neglect
acceleration?

Dhs < Hnvk
%Ir(” = q)‘

R (0.3
PRMS

* Theory isn't free, but time-scale of nonperturbatvity is:*

4 162 "Patential bacomes important well afte
rmm pert 2, ‘/\” free theory first-ardernd |
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FURTHERIAPPROXIMATING
MASTER EVOLUTION

* Retumning to our wavefunctional:

Tn{’“ril'l }i" ar Afl = 'f-’un.h.ml['.’m..f + Af] / 'D’r‘illq [ Dﬁ").‘ lr"r.l)ll[{',"ll-]l: Flr"l" [ty 1]

* Imposing first-order classical evolution on the IR gives

Vi{orkit + Atlrr = Ynp, sk taldir, b+ Al)

b / Digy "r}[a,’;”,, Der(Prgs byt 4 At)|"

2 P H'."mi.flf 15y, o [0y oy it 1441
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RECOVERING STAROBINSKY

» We've multiplicatively factorized our wavefunctional into hard
and soft. Only soft requires special treatment, so we factor
out IR,

* To solve for late-time behavior in IR sector, we define:

Ha
pleh, t) = [D’f"f (] / rf.:l'qrﬁ,f - r,’;‘\ [ [hg, f_l”fl'*'

“

* Using the functional definition of Wi, we can solve for p's
evolution,
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ANCK EQUATION

* I this way, we recovel Starobinsky’s central result, that p(¢p;t)
satisfies a Folker-Plandl equation

: el HY
Pl t) = :"l"‘;}"J.,'.[V'(r,-‘J)p(r,-‘;. )] + grads P(dyt)

* While generic solution is difficult, we can straightforwardly get
late-time behavior

Bl iy ]
p(l,w‘),f) = N~ nrt B L 111“(,‘!,},- Iyt
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FURTHER|APPROXIMATING
MASTER EVOLUTION

* Returning to our wavdfunctional:

Wl{datit 4 A = Yip, na[dia, t + At /'D"‘J”u / Dby Yuon[{daq }; £ 5ron #0:

* Imposing first-order classical evolution on the IR gives

Wilda )it + Al = Yup, i sks waldi, t + At

* ['n;,’;.,,‘ "r\{a,ﬂ..,f f.‘J,|(1’I|,,‘l‘.f | .-‘_\.')I"

% ot [{ g }5 £)¢ Fuan, [ @19, 80q it 1+ AL
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ETFEPIIE S

* Fokker-Planck solution has zero eigenvalue with all others

D¢ SItve.

* At very late times, any dependence on initial conditions is
washed out. We flow to distribution dictated by interaction

alone.

, 5 H*
* Correlators stay finite (¢*)1—00 ~ —

Pirsa: 14100051 Page 51/54



Pirsa: 14100051

TH
CORRES

= By

PONDIEIN I

* At present, we still lack a firmly holographic understanding of

stochastic inflation.

* However, we have recovered behavior reminiscent of the parton
shower® is this a hint of strong dynamics?

« Both DS and PS have leading Markovian description

* Probabillities flow in both (fixed point in DS) (Fokker-Planck vs.

DGLAP)

» Factorization in both (jets in QCD vs. Hubble patches)

* Proceeding, we hope to tighten the connection

)03.2788
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ETFEPIIE S

* Fokker-Planck solution has zero eigenvalue with all others

D¢ SItve.

* At very late times, any dependence on initial conditions is
washed out. We flow to distribution dictated by interaction

alone.

, 5 H*
* Correlators stay finite (¢*)1—00 ~ —
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FOKKER-PLANCK EQUATION

* In this way, we recover Starobinsky's central result, that p(¢p,t)
satisfies a Fokker-Planck equation

3

1 I
p(o,t) = =—=04[V'(¢) p(d,t)] +

02
3H Q2 Oy p(9,t)

* While generic solution is difficult, we can straightforwardly get
late-time behavior

o 00
| D — Jr ) 'SJC-IV 7 ) / N 1 n {
p(p,t) = Ne s’ + % &, (P)e

=il
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