Title: Entanglement entropy of Wilson loops: Holography and matrix models
Date: Oct 28, 2014 02:00 PM
URL: http://pirsa.org/14100006

Abstract: <span> A haf-BPS circular Wilson loop in maximaly supersymmetric SU(N) Yang-Mills theory in an arbitrary representation is
described by a Gaussian matrix model with a particular insertion. The additional entanglement entropy of a spherical region in the presence of such
aloop was recently computed by Lewkowycz and Maldacena using exact matrix model results. In thistalk | will utilise the supergravity solutions
that are dual to such Wilson loops in large representations to calculate this entropy holographically. Employing the results of Gomis, Matsuura,
Okuda and Trancanelli to express this holographic entanglement entropy in a matrix model language, | will demonstrate complete agreement with
the formula derived by Lewkowycz and Maldacena.</span>
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1
» Consider the entanglement entropy in the presence of a half-BPS
Wilson loop in a large representation using holography

» Demonstrate agreement with a general formula derived by
[Lewkowycz & Maldacena]

» Utilise the bubbling geometries of [D'Hoker, Estes & Gutperle] and
the matrix model results of [Gomis, Matsuura, Okuda & Trancanelli]
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Qutline

. LM formula

. Matrix model description of half-BPS Wilson loops
. Bubbling geometries

. Holographic computation

. Summary
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Entanglement entropy of ball-shaped regions

» Entanglement entropy:
1

Sa=—trpalogpa

von Neumann entropy of the reduced density matrix p 4 associated
with a spatial region A

» Consider a region with spherical boundary d.A with radius R in a
CFT,

» S 4 is given by the thermodynamic entropy of the same theory at
inverse temperature 3 = 27 R defined on Sj x H%™!
[Casini, Huerta & Myers]
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Entanglement entropy in the presence of a Wilson loop

» Consider AS 4: theiadditional entanglement entropy in the presence
of a circular Wilson loop relative to the vacuum

» Need the free energy and its first derivative with respect to
temperature in the presence of the loop

» Field theory result [Lewkowycz & Maldacenal:
AS 4 = log (Wg) + 27 Vol(S%~2) hy

where hy is the scaling weight of the loop
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A sketch of the derivation

» Thermodynamic entropy and some definitions:

S=(1-p03)logZ

Zw =/D¢We—5 and (X)w =

» Key step:

B0 log Zw = —5/01% <M aﬁgW> - —fddx\/g(TT.,>W
dghv W

» Conformal invariance, tracelessness and conservation fix (7),,)w up
to a constant Ay and the result follows from Sy — S
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Our Wilson loop as a matrix model

» We consider the half-BPS circular Wilson loop ind =4, N =4
SU(N) supersymmetric Yang-Mills theory in representation R
|

Wr = trg chpi%ds (Au:i:“ + i®n! |.L'|)

» The expectation value of this loop localises to the expectation value
of a specific operator in the Gaussian matrix model [Pestun]:

1 ' 2N
(Wg) = E,/[dM] trr eM exp (_T trM2)

where M’ = M — %(trM)]leN.
» Our focus: large representations with |R| ~ O(N?)
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Matrix models

Quantum gauge theory in zero dimensions of an N x N Hermitian
matrix M |

Work in eigenvalue formulation: M — diag (mq,ma,...,my)
Saddle-point approximation: fix coupling A and take N — oo

Assume distribution of eigenvalues is continuous with compact
support on an interval C:

LN
ﬁ;f(m?;) —3 /Cdlrp(i')f(-ﬁ)
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Partition function

. A(m)? = H Imy — my|?
k<l

N
= /Hdmi exp (—So)
i=1

N

~Sy = 5 m? + 22 log |m; — mj|

i=1 i<j

IN?
» -2 / dz p(z) &* + N? / dz dy p(z) p(y) log |z — 3/
c CxC
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Matrix model resolvent

Solve saddle-point equation by introducing an auxiliary function: the
resolvent
z
w(z) = /\/ dx plz)
c Z—T
Analytic on the whole complex z plane except a discontinuity across
the interval C
Express via contour deformations as
0

=5 (wi(z) —w—_(x)) where wi(z)=w(x * i)

p(z)

In the case of Sy the eigenvalues follow the Wigner semicircle law:

poy(x) = :)\\/)\— z¢ for C= [—\/X, \/X]
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Our Wilson loop as a matrix model (I1)

» Compute our Wilson loop using saddle-point methods as before, but
now with the insertion of trg eM ;

log (Wr) = — (Swilson — So)

> Divide Young tableau R into g blocks, where the I*M block has n;
rows of length K; and we define K; = K; — |R|/N

» The effective action includes a linear shift and multiple intervals and
the interactions simplify at large A [Okuda & Trancanellil:

g+1 9N
SWIlSOH_NZ/ d-l:p (—A‘E +KI-E)

+N? / dz dy p(x) ply) log |z — y|
CxC
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Return to LM formula

» Recall for d = 4:

'AS 4 = log (WRr) + 87%hw

» The coefficient hy can be related to the second moment of the
eigenvalue distribution [Gomis, Matsuura, Okuda & Trancanelli|:

N? (0)
hw = ~3.2) Apy where Aps = p2 — py
() _ A

pngdxp($)$2 and py’ = -
c 4

» Our computation: holographic entanglement entropy agrees precisely
with the LM result in this form
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Holographic description of Wilson loops

|
Depends on the size of the representation R.:

» fundamental: probe string [Rey & Yee; Maldacena

» k' (anti-) symmetric: probe (D5-) D3-brane with k units of
worldvolume electric flux [Gomis & Passerini]

» |R| ~ O(N?): probe description breaks down and is replaced by a
fully backreacted bubbling geometry [D'Hoker, Estes & Gutperle]
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Symmetry ansatz in |IB supergravity

Bosonic symmetry group:

180(2,1) x SO(3) x SO(5)

Fibration of AdSs x S% x S* over a Riemann surface ¥ with
boundary 0%:

ds® = f}ds? g, + f3 dske + f; dsks + 40%dE?
dv? + dr?

V2

dsys, = and d¥? = |dw|?

All functions depend on w, w
Example: AdSs x S° with w = z + 6

fi = Lcoshz, f,=Lsinhz, fy=Lsinf, o=1L/2
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Harmonic functions and boundary conditions

Solution characterised by two real harmonic functions Ay, hg
|

Take ¥ = LHP and 90X =R

Regularity imposes boundary conditions on hy, he at 0%:

ho ~ i(w — ’U_)) = hglaz =
hilys, : alternating Neumann and Dirichlet BCs

Genus g solution: 2¢g + 2 real numbers (branch points)

Higher genus solutions admit more nontrivial 3- and 5-cycles
(bubbles), which support non-zero 3- and 5-form flux
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Some examples

» g=0: AdS5 x S°
» g = 1. expressed in terms of elliptic integrals
» Explicit formulae not known for g > 2
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Map to field theory and matrix model

Integrals of fluxes through nontrivial cycles for genus g are given by
the n;, K; of a Young tableau [Okuda & Trancanelli]

1
The resolvent w(z) of the matrix model can be related to the branch
points that characterise the bubbling solution [Okuda & Trancanelli|

Ansatz and constraints for w(z) match regularity constraints and
flux integrals for the geometry if we identify

o o
hy = 89 2(z—2) — (w—w)] and hg = T (z — 2)

We also identify z with the coordinate on X: z = w

Use this to phrase the holographic entanglement entropy in matrix
model language
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Holographic entanglement entropy

Minimal surface prescription [Ryu & Takayanagil:

Amin

S, =
A7 4GN

where A, is the area of a co-dimension two minimal surface
anchored at the AdS boundary on 0.A

Recall: fibration of AdS,; x S? x S% over ¥
Choose v = v(z, z) at constant 7 and find the area functional

7 v
v202 0z 02

A= 2V01(S2)VOI(S4)/d2:: f3 ;;102\/1 +

Minimised by v = constant
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Holographic entanglement entropy (1)

» Consider AdSs x S° with metric
1

d.5'2 - L2 )

u

|
The minimal surface at constant 7 anchored at © = 0 on a sphere of
radius r = R is

(du® + dr° + dr® + r’ds%2) + dsgr,]

u(r)® +r? = R?

In AdS, slicing, which we can write as
ds* = L? [da® + cosh? z ds% 4q, + sinh® z ds?%., + ds%s]
this surface is given by a constant AdSs radial coordinate:
v=~R

For a general bubbling geometry (asymptotic to AdSs x S°), the
surface v = R in AdSs slicing ends on a sphere of radius I at the
boundary in Poincaré slicing.
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Express minimal area in matrix model language

Rewrite minimal area in terms of hq, ho
Could just evaluate (numerically), but only for g = 1

o | .
Instead, write in terms of w(z) using OT map:

o
6g2
~2(z — 2)?0,w 0;0 + (2 — 2)(w — @)(B,w + ;@) }

14
Amin -

/dzz {2(z — 2)2 (0w + 0:0) — 4(z — 2)(w — @)

Strategy: exchange order of integrals using

w(z) = /\/Cda: p2)

2 —XT

Need to regulate at large |z| (boundary of AdSs x S°)

Pirsa: 14100006 Page 38/44



Pirsa: 14100006

Result

» Result for a general number of intervals, describing a Wilson loop in
a general large representation R.:

R2
52

R 3 2
10g;—10g\5+ i

S = N? =
& [ 4 3A

+ / dz dy p(z) p(y) log [z — y|
CxC

» The coefficient of the logarithmic divergence is independent of the
UV cut-off € and equals N?

» Subtract off the vacuum result (g = 0) to find

2Ap2
3A

AS4 = N* UC dedyp(:r) p(y)log |z —y| —
x

— (log\ﬂ — log 2 — }1)]
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Comparison

» RHS of LM formula: !

g+1 N R
log (Wg) + 8m2hw —NZf dzx p(x (—T'J;z—l—K;m)

ks N2/C . dz dy p(z) p(y) log |z — y|
X

3 8N?
+N2 (—log\/X—l—log2+4) - jApQ

4N?
—ASA—i-NZ d.I:p K;.E—TApg

v The final two terms sum to zero once we impose the saddle-point
equation
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Summary

Agreement with LM formula for large representations

Confirmation of OT map and consistency of Ryu-Takanyanagi in a
more general situation

Next step: explore other bubbling geometries

Example: solutions of eleven-dimensional supergavity found by

|D'Hoker, Estes, Gutperle & Krym] that describe Wilson surfaces in
the six-dimensional (2,0) superconformal theory
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