Title: The Minimal Modal Interpretation of Quantum Theory

Date: Oct 14, 2014 03:30 PM

URL: http://pirsa.org/14100001

Abstract: A persistent mystery of quantum theory is whether it admits an interpretation that is realist, self-consistent, model-independent, and unextravagant in the sense of featuring neither multiple worlds nor pilot waves. In this talk, I will present a new interpretation of quantum theory -called the minimal modal interpretation (MMI) -- that aims to meet these conditions while also hewing closely to the basic structure of the theory in its widely accepted form. The MMI asserts that quantum systems -- whether closed or open -- have actual states that evolve along kinematical trajectories through their state spaces, and that those trajectories are governed by specific (if approximate) dynamical rules determined by a general new class of conditional probabilities, and in a manner that differs significantly from the de Broglie-Bohm formulation. The MMI is axiomatically parsimonious, leaves the usual dynamical content of quantum theory essentially intact, and includes only metaphysical entities that are either already a standard part of quantum theory or that have counterparts in classical physics. I will also address a number of important issues and implicit assumptions in the foundations community that I believe merit reconsideration and re-evaluation going forward.

Pirsa: 14100001 Page 1/60

OUTLINE

- 1 Introduction
 - Basic Features
 - Why a New Interpretation?
 - Why Not Instrumentalism?
- 2 Our Interpretation
 - Motivation from Classical Physics
 - Traditional Formulation of Quantum Case
 - Our Picture
- 3 Detailed Treatment
 - Minimal Modal Interpretation (MMI)
 - Classical Realism
 - Classical vs. Quantum Realism
 - Quantum Conditional Probabilities
- 4 Conclusion
 - Summary

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

1 / 30

Z

Pirsa: 14100001 Page 2/60

Basic Features

BASIC FEATURES

- lacktriangle New realist interpretation ightarrow goes beyond instrumentalism
 - Standard formalism \rightarrow based on density matrices, dynamics intact
- lacksquare Definite measurement outcomes ightarrow "one world" interpretation
- Quantum trajectories → even for improper mixtures
- $lue{}$ Model independent ightarrow encompasses all systems (relativistic or not)
- No exotic ingredients → metaphysically minimal (only objects in traditional quantum or with classical parallels)

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

1 / 30

Pirsa: 14100001 Page 3/60

Basic Features

Basic Features

- lacksquare New realist interpretation ightarrow goes beyond instrumentalism
- \blacksquare Standard formalism \rightarrow based on density matrices, dynamics intact
- Definite measurement outcomes → "one world" interpretation
- Quantum trajectories → even for improper mixtures
- Model independent → encompasses all systems (relativistic or not)
- No exotic ingredients → metaphysically minimal (only objects in traditional quantum or with classical parallels)

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

1 / 30

Pirsa: 14100001 Page 4/60

Basic Features

- lacktriangle New realist interpretation ightarrow goes beyond instrumentalism
- $lue{}$ Standard formalism o based on density matrices, dynamics intact
- Definite measurement outcomes → "one world" interpretation
- Quantum trajectories → even for improper mixtures
- Model independent → encompasses all systems (relativistic or not)
- No exotic ingredients → metaphysically minimal (only objects in traditional quantum or with classical parallels)

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

1 / 30

Pirsa: 14100001 Page 5/60

Pirsa: 14100001 Page 6/60

STATES AND OBSERVERS

- Ultimate meaning of state vector of system?
 - Represents experimenter's knowledge?
 - Objective probability distribution?
 - ▶ Trouble with PBR no-go theorem
 - Irreducible ingredient of reality?
 - ▶ Like state of classical system?
- What constitutes observer?
 - Talk about state of observer within formalism

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

STATES AND OBSERVERS

- Ultimate meaning of state vector of system?
 - Represents experimenter's knowledge?
 - Objective probability distribution?
 - ▶ Trouble with PBR no-go theorem
 - Irreducible ingredient of reality?
 - Like state of classical system?
 - What constitutes observer?
 - ➤ Talk about state of observer within formalism?

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

3 / 30

Pirsa: 14100001

- No realistic system ever perfectly free of external entanglements, or truly describable by state vector!
- Apparent breakdown in popular depiction of quantum theory
 - Every particle described by specific wave function in 3D space?
- No-collapse interpretations often presume existence of maximal closed system in exactly pure state evolving unitarily
 - "Universal wave function" (e. g., dBB, MWI)
 - Safe assumption given possibility of eternal inflation?
 - Without prior assumption of linear CPT dynamics, not generally possible to embed evolving quantum system in universal wave function
- Our interpretation: no need for these assumptions

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

Instrumentalism in General

- Ingredients: system, agent, measurements, outcomes, outcome probabilities forming a distribution

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

Instrumentalism in General

Source: Les Chatfield

- Ingredients: system, agent, measurements, outcomes, outcome probabilities forming a distribution
- Basic framework:
 - Probability distribution evolves according to some dynamical rule
 - e.g., Markov process, Liouville equation, Von Neumann equation
 - ▶ Agent (?) performs measurement (?) and obtains some outcome
 - Probability distribution revised according to some update rule
 - e.g., Bayesian update, Von Neumann-Lüders rule

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

Shuffling Around the Mysteries

- Instrumentalism incomplete
- Replacing "observers" and "Heisenberg cut" with "agents" not progress \rightarrow just shuffles around the mysteries!
 - Physical requirements for constituting an agent?
 - What counts as an agent? People? (Half-awake/sleeping/comatose people?) Monkeys? Dogs? Ants? Paramecia? (Nano)robots? Why?
- Physical requirements for constituting a measurement?
- Does system have some underlying "ontic" state? (Does agent?)

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

MOTIVATION FROM CLASSICAL PHYSICS

- General theoretical structure of classical physics:
 - Classical system has specific ontic state in config space
 - Ontic state evolves via some (possibly stochastic) dynamical rule

- Dynamical rule for system's underlying ontic state:
 - Exists even if ontic state beneath evolving probability distribution (epistemic state) on config space
 - Consistent with overall evolution of epistemic state

Epistemic dynamics - probabilistic ensemble over ontic dynamics

Our interpretation: seek a similar picture for quantum theory!

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

MOTIVATION FROM CLASSICAL PHYSICS

- General theoretical structure of classical physics:
 - Classical system has specific ontic state in config space
 - Ontic state evolves via some (possibly stochastic) dynamical rule

- Dynamical rule for system's underlying ontic state:
 - Exists even if ontic state beneath evolving probability distribution (epistemic state) on config space
 - Consistent with overall evolution of epistemic state
 - Epistemic dynamics = probabilistic ensemble over ontic dynamics
- Our interpretation: seek a similar picture for quantum theory!

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

Insufficiency of Epistemic Dynamics

- Without dynamical rule for system's underlying ontic state itself:
 - ► Ontic state free to fluctuate drastically/discontinuously between macroscopically distinct configurations with appropriate frequency ratios

Source: learn44.com

- Any realist interpretation—including psi-epistemic—that fails to
 - ► Hidden variables need hidden dynamics!

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

Insufficiency of Epistemic Dynamics

- Without dynamical rule for system's underlying ontic state itself:
 - Ontic state free to fluctuate drastically/discontinuously between macroscopically distinct configurations with appropriate frequency ratios

Source: learn44.com

- Any realist interpretation—including psi-epistemic—that fails to specify ontic dynamics is exposed!
 - Hidden variables need hidden dynamics!
 - "Smoothness condition" for physical configuration over time

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

Insufficiency of Epistemic Dynamics

- Without dynamical rule for system's underlying ontic state itself:
 - Ontic state free to fluctuate drastically/discontinuously between macroscopically distinct configurations with appropriate frequency ratios

Source: learn44.com

- Any realist interpretation—including psi-epistemic—that fails to specify ontic dynamics is exposed!
 - Hidden variables need hidden dynamics!
- Our interpretation: provides ontic dynamics
 - "Smoothness condition" for physical configuration over time

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

OUR PICTURE

Source: Lucie Winsky

- Systems (closed or open) have actual ontic states that evolve along kinematical trajectories through their state spaces
- Those trajectories are governed by specific (if approximate/emergent) dynamical rules

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

10 / 30

Pirsa: 14100001 Page 18/60

OUR PICTURE

Source: Lucie Winsky

- Systems (closed or open) have actual ontic states that evolve along kinematical trajectories through their state spaces
- Those trajectories are governed by specific (if approximate/emergent) dynamical rules

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

10 / 30

Pirsa: 14100001 Page 19/60

MINIMAL MODAL INTERPRETATION (MMI): CONCEPT SUMMARY

- Type of *modal interpretation*
 - Eigenstates = possible, mutually exclusive ontic states
 - Sample space manifestly contextual!
 - ► Eigenvalues = "objective" epistemic probabilities that one *possible* ontic state is actual ontic state
- New general class of quantum conditional probabilities to sew together ontologies and give dynamical rules

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

MINIMAL MODAL INTERPRETATION (MMI): CONCEPT SUMMARY

- Type of modal interpretation
- Given "objective" density matrix arising solely via entanglement:
 - Eigenstates = possible, mutually exclusive ontic states
 - Sample space manifestly contextual!
 - Eigenvalues = "objective" epistemic probabilities that one possible ontic state is actual ontic state
- $\begin{array}{c} p_1, \Psi_1 \\ p_2, \Psi_2 \end{array} \qquad \begin{array}{c} \text{actual} \\ \text{ontic state} \\ \\ \vdots \\ \text{epistemic} \\ \text{probabilities} \\ \text{(eigenvalues)} \end{array}$

 New general class of quantum conditional probabilities to sew together ontologies and give dynamical rules

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

HIDDEN VARIABLES?

■ To extent that have hidden variables, just our ontic states

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

12 / 30

Pirsa: 14100001 Page 22/60

CLASSICAL REALISM IN GENERAL

- Ingredients: system, ontic states from some configuration space, epistemic probabilities forming distribution
- Basic framework:
 - Ontic state evolves according to (possibly stochastic) dynamical rule
 - ▶ e.g., Markov process, Newton's second law, Maxwell equations
 - System may hide information about ontic state from outside world

Epistemic probability distribution (epistemic state) on config space

- Epistemic evolution compatible with underlying ontic evolution
 - e. g., Markov process, Liouville equation
 - Compatibility: epistemic evolution = ensemble avg of ontic evolution

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

13 / 30

Pirsa: 14100001 Page 23/60

CLASSICAL REALISM IN GENERAL

- Ingredients: system, ontic states from some configuration space, epistemic probabilities forming distribution
- Basic framework:
 - Ontic state evolves according to (possibly stochastic) dynamical rule
 - ▶ e.g., Markov process, Newton's second law, Maxwell equations
 - System may hide information about ontic state from outside world
 - Epistemic probability distribution (epistemic state) on config space
 - ▶ Epistemic evolution *compatible* with underlying ontic evolution
 - e. g., Markov process, Liouville equation
 - Compatibility: epistemic evolution = ensemble avg of ontic evolution
 - ho Tricky to implement in quantum theory \rightarrow gives us strong constraints!

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

Unstated Assumptions of Realism

- Numerous unstated, crucial assumptions even in classical realism
- Similar sort of trouble with unstated assumptions haunts certain other quantum interpretations
 - e. g., MWI, despite claims, not axiomatically simple or parsimonious!
- Our interpretation: when assumptions of classical realism made explicit, we will show they have natural correspondence with postulates of MMI → "quantum realism"

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

14 / 30

Pirsa: 14100001 Page 25/60

Unstated Assumptions of Realism

- Numerous unstated, crucial assumptions even in classical realism
- Similar sort of trouble with unstated assumptions haunts certain other quantum interpretations
 - e. g., MWI, despite claims, not axiomatically simple or parsimonious!
- Our interpretation: when assumptions of classical realism made explicit, we will show they have natural correspondence with postulates of MMI \rightarrow "quantum realism"

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

CLASSICAL VS. QUANTUM REALISM (MMI)

 Axiomatic content of MMI has natural correspondence to often-unstated ingredients of classical realism

- 1. Ontic states:
 - Classical o ontic states q represented by elements of configuration space $\mathcal C$
 - ▶ Quantum (MMI) \rightarrow ontic states Ψ represented by elements $|\Psi\rangle$ of Hilbert space \mathcal{H} (up to overall normalization)

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

15 / 30

Pirsa: 14100001 Page 27/60

- 2. Epistemic states:
 - ▶ Classical \rightarrow $\{(p(q),q)\}_q$, where each $p(q) \in [0,1]$ corresponds to possible ontic state q, one of which is system's actual ontic state
 - ▶ Quantum (MMI) \rightarrow { (p_i, Ψ_i) }, where each $p_i \in [0, 1]$ corresponds to possible ontic state Ψ_i , one of which is system's actual ontic state
 - Exists correspondence between *objective* epistemic states (i.e., due to entanglement, not subjective classical ignorance) and density matrices:

$$\{(p_i, \Psi_i)\}_i \leftrightarrow \hat{\rho} = \sum_i p_i |\Psi_i\rangle \langle \Psi_i|$$

System-centric ontology: determined by system's own density matrix

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

- 2. Epistemic states:
 - ▶ Classical \rightarrow $\{(p(q),q)\}_q$, where each $p(q) \in [0,1]$ corresponds to possible ontic state q, one of which is system's actual ontic state
 - Quantum (MMI) $\rightarrow \{(p_i, \Psi_i)\}_i$, where each $p_i \in [0, 1]$ corresponds to possible ontic state Ψ_i , one of which is system's actual ontic state

Exists correspondence between objective epistemic states (i. e., due to entanglement, not subjective classical ignorance) and density matrices:

$$\{(p_i, \Psi_i)\}_i \leftrightarrow \hat{\rho} = \sum_i p_i |\Psi_i\rangle \langle \Psi_i|$$

System-centric ontology: determined by system's own density matrix

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

- 2. Epistemic states:
 - ▶ Classical \rightarrow $\{(p(q),q)\}_q$, where each $p(q) \in [0,1]$ corresponds to possible ontic state q, one of which is system's actual ontic state
 - Quantum (MMI) $\rightarrow \{(p_i, \Psi_i)\}_i$, where each $p_i \in [0, 1]$ corresponds to possible ontic state Ψ_i , one of which is system's actual ontic state
 - Exists correspondence between objective epistemic states (i.e., due to entanglement, not subjective classical ignorance) and density matrices:

$$\left[\left\{\left(p_{i},\Psi_{i}
ight)
ight\}_{i}\leftrightarrow\hat{
ho}=\sum_{i}p_{i}\left|\Psi_{i}
ight
angle\left\langle\Psi_{i}
ight|$$

System-centric ontology: determined by system's own density matrix

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

■ 3. Relationship between parent-system W = Q + E epistemic states and subsystem Q, E epistemic states:

$$\{(p_W(w), w)\}_w \implies p_Q(q) \equiv \sum_e p_W(w = (q, e))$$

Quantum (MMI) \rightarrow Hilbert space $\mathcal{H}_W = \mathcal{H}_O \otimes \mathcal{H}_E$, and partial trace

$$\{(p_W(w), \Psi_w)\}_w \implies \hat{\rho}_Q \equiv \operatorname{Tr}_E[\hat{\rho}_W] \iff \rho_Q(i, i') \equiv \sum_e \rho_W((i, e), (i', e))$$

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

- 3. Relationship between parent-system W = Q + E epistemic states and subsystem Q, E epistemic states:
 - Classical o configuration space $\mathcal{C}_W = \mathcal{C}_Q \times \mathcal{C}_E$, and marginalization/partial sum

$$\{(p_W(w), w)\}_w \implies p_Q(q) \equiv \sum_e p_W(w = (q, e))$$

• Quantum (MMI) o Hilbert space $\mathcal{H}_W = \mathcal{H}_Q \otimes \mathcal{H}_E$, and partial trace

$$\{(p_W(w), \Psi_w)\}_w \implies \hat{\rho}_Q \equiv \operatorname{Tr}_E[\hat{\rho}_W] \iff \rho_Q(i, i') \equiv \sum_e \rho_W((i, e), (i', e))$$

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

- 3. Relationship between parent-system W = Q + E epistemic states and subsystem Q, E epistemic states:
 - Classical o configuration space $\mathcal{C}_W = \mathcal{C}_Q \times \mathcal{C}_E$, and marginalization/partial sum

$$\{(p_W(w), w)\}_w \implies p_Q(q) \equiv \sum_e p_W(w = (q, e))$$

▶ Quantum (MMI) → Hilbert space $\mathcal{H}_W = \mathcal{H}_Q \otimes \mathcal{H}_E$, and partial trace

$$\{(p_W(w), \Psi_w)\}_w \implies \hat{\rho}_Q \equiv \operatorname{Tr}_E[\hat{\rho}_W] \iff \rho_Q(i, i') \equiv \sum_e \rho_W((i, e), (i', e))$$

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

- 3. Relationship between parent-system W = Q + E epistemic states and subsystem Q, E epistemic states:
 - Classical o configuration space $\mathcal{C}_W = \mathcal{C}_Q \times \mathcal{C}_E$, and marginalization/partial sum

$$\{(p_W(w), w)\}_w \implies p_Q(q) \equiv \sum_e p_W(w = (q, e))$$

▶ Quantum (MMI) → Hilbert space $\mathcal{H}_W = \mathcal{H}_Q \otimes \mathcal{H}_E$, and partial trace

$$\{(p_W(w), \Psi_w)\}_w \implies \hat{\rho}_Q \equiv \operatorname{Tr}_E[\hat{\rho}_W] \iff \rho_Q(i, i') \equiv \sum_e \rho_W((i, e), (i', e))$$

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

- 3. Relationship between parent-system W = Q + E epistemic states and subsystem Q, E epistemic states:
 - Classical o configuration space $\mathcal{C}_W = \mathcal{C}_Q \times \mathcal{C}_E$, and marginalization/partial sum

$$\{(p_W(w), w)\}_w \implies p_Q(q) \equiv \sum_e p_W(w = (q, e))$$

▶ Quantum (MMI) → Hilbert space $\mathcal{H}_W = \mathcal{H}_Q \otimes \mathcal{H}_E$, and partial trace

$$\{(p_W(w), \Psi_w)\}_w \implies \hat{\rho}_Q \equiv \operatorname{Tr}_E[\hat{\rho}_W] \iff \rho_Q(i, i') \equiv \sum_e \rho_W((i, e), (i', e))$$

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

• 4. (a) Kinematical relationship between parent-system W=Q+E ontic states and subsystem Q,E ontic states:

■ Quantum (MMI) → (derived from general new class of quantum conditional probabilities)

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

CLASSICAL VS. QUANTUM REALISM (MMI) (CONT.)

lacksquare 4. (b) *Dynamical* relationship between ontic states of system Q at initial time(s) and ontic states at final time:

which lifts to linear epistemic dynamical mapping = ensemble average over ontic dynamical mapping:

$$\underbrace{p_Q\left(q';t'\right)}_{\text{epistemic}} = \sum_{q_1,\dots} \underbrace{p_Q\left(q';t'|\left(q_1;t_1\right),\dots\right)}_{\text{conditional probabilities}} \times \underbrace{p_Q\left(q_1;t_1\right)\dots}_{\text{epistemic states}} \times \underbrace{p_Q\left(q_1;t_1\right)\dots}_{\text{epistemic states}}$$

► Quantum (MMI) → (derived from general new class of quantum conditional probabilities)

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

CLASSICAL VS. QUANTUM REALISM (MMI) (CONT.)

- 4. (b) Dynamical relationship between ontic states of system Q at initial time(s) and ontic states at final time:
 - ▶ Classical \rightarrow assuming Q has well-defined dynamics, have ontic dynamical mapping

$$p_Q(\cdot;t'|(\cdot;t_1),\ldots):\underbrace{(q_1;t_1),\ldots}_{\text{initial data}},\underbrace{(q';t')}_{\text{final data}}\mapsto \underbrace{p_Q(q';t'|(q_1;t_1),\ldots)}_{\text{conditional probabilities}},$$

which lifts to linear epistemic dynamical mapping = ensemble average over ontic dynamical mapping:

$$\underbrace{p_Q\left(q';t'\right)}_{\substack{\text{epistemic}\\ \text{state at }t'}} = \sum_{q_1,\dots} \underbrace{p_Q\left(q';t'|\left(q_1;t_1\right),\dots\right)}_{\substack{\text{conditional probabilities}\\ \text{(independent of epistemic states)}}} \times \underbrace{p_Q\left(q_1;t_1\right)\cdots}_{\substack{\text{epistemic states}\\ \text{at }t_1,t_2,\dots}}.$$

► Quantum (MMI) → (derived from general new class of quantum conditional probabilities)

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

Pirsa: 14100001 Page 39/60

LINEAR CPT DYNAMICS

■ Linear CPT dynamical mappings widely used in quantum chemistry/information science → quantum operations/channels

e.g., unitary dynamics for closed systems,

nostulate without post-selection)

- Buscemi → linear CPT dynamics ←⇒ no backward flow of information into system from environment
 - ▶ Both classical and quantum → open subsystems do not generically have linear dynamics!
- Not proposing any fundamental modification (e.g., GRW or T violation) to dynamics of quantum theory

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

LINEAR CPT DYNAMICS

- Linear CPT dynamical mappings widely used in quantum chemistry/information science → quantum operations/channels
 - e. g., unitary dynamics for closed systems,
 - Lindblad dynamics for systems in strong contact with environment,
 - ▶ measurement-induced decoherence (≈Von Neumann-Lüders projection postulate without post-selection)
- Buscemi → linear CPT dynamics ←⇒ no backward flow of information into system from environment
 - ▶ Both classical and quantum → open subsystems do not generically have linear dynamics!
- Not proposing any fundamental modification (e.g., GRW or T violation) to dynamics of quantum theory

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

LINEAR CPT DYNAMICS

- Linear CPT dynamical mappings widely used in quantum chemistry/information science → quantum operations/channels
 - e. g., unitary dynamics for closed systems,
 - Lindblad dynamics for systems in strong contact with environment,
 - ▶ measurement-induced decoherence (≈Von Neumann-Lüders projection postulate without post-selection)
- Buscemi → linear CPT dynamics ←⇒ no backward flow of information into system from environment
 - ▶ Both classical and quantum → open subsystems do not generically have linear dynamics!
- Not proposing any fundamental modification (e.g., GRW or T violation) to dynamics of quantum theory
 - Simply accommodating openness of generic meso/macroscopic quantum systems

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

BASIC SET-UP

■ Suppose $W = Q_1 + \cdots + Q_n$ has approximately linear CPT dynamics $\mathcal{E}_W^{t'\leftarrow t}\left[\cdot\right]$ over given time interval $\Delta t \equiv t' - t \geq 0$:

$$\hat{\rho}_{W}\left(t\right)\mapsto\hat{\rho}_{W}\left(t'\right)=\mathcal{E}_{W}^{t'\leftarrow t}\left[\hat{\rho}_{W}\left(t\right)\right]$$

- Linear CPT approximation may break down for arbitrarily short time scales $\Delta t \ll \delta t_W$ relative to some physical characteristic δt_W for W
 - Naturally protects from technical issues involving eigenstate-swap

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

- Can trivially express epistemic probability $p_{Q_1}\left(i_1;t'\right)$ for subsystem Q_1 to be in ontic state $\Psi_{Q_1}\left(i_1;t'\right)$ as
- $p_{Q_1}(i_1;t') = \operatorname{Tr}_{Q_1} \left[\hat{P}_{Q_1}(i_1;t') \, \hat{\rho}_{Q_1}(t') \right]$
- $= \operatorname{Tr}_{W} \left[\left(\hat{P}_{Q_{1}}\left(i_{1}; t' \right) \otimes \hat{1}_{Q_{2}} \otimes \cdots \otimes \hat{1}_{Q_{n}} \right) \hat{\rho}_{W}\left(t' \right) \right]$
 - $=\operatorname{Tr}_{W}\left[\left(\hat{P}_{Q_{1}}\left(i_{1};t'\right)\otimes\hat{1}_{Q_{2}}\otimes\cdots\otimes\hat{1}_{Q_{n}}\right)\mathcal{E}_{W}^{t'\leftarrow t}\left[\hat{\rho}_{W}\left(t\right)\right]\right]$
- $= \sum_{w} \operatorname{Tr}_{W} \left[\left(\hat{P}_{Q_{1}}(i_{1}; t') \otimes \hat{1}_{Q_{2}} \otimes \cdots \otimes \hat{1}_{Q_{n}} \right) \mathcal{E}_{W}^{t' \leftarrow t} \left[\hat{P}_{W}(w; t) \right] \right] p_{W}(w; t)$
- $= \sum_{i_2,...,i_n,w} \operatorname{Tr}_W \left[\left(\hat{P}_{Q_1}(i_1;t') \otimes \hat{P}_{Q_2}(i_2;t') \otimes \cdots \otimes \hat{P}_{Q_n}(i_n;t') \right) \mathcal{E}_W^{t'\leftarrow t} \left[\hat{P}_W(w;t) \right] \right] p_W(w;t)$

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

- Can trivially express epistemic probability $p_{Q_1}\left(i_1;t'\right)$ for subsystem Q_1 to be in ontic state $\Psi_{Q_1}\left(i_1;t'\right)$ as
- $p_{Q_1}(i_1;t') = \operatorname{Tr}_{Q_1} \left[\hat{P}_{Q_1}(i_1;t') \, \hat{\rho}_{Q_1}(t') \right]$
- $\blacksquare = \operatorname{Tr}_{W} \left[\left(\hat{P}_{Q_{1}}\left(i_{1}; t' \right) \otimes \hat{1}_{Q_{2}} \otimes \cdots \otimes \hat{1}_{Q_{n}} \right) \hat{\rho}_{W}\left(t' \right) \right]$
 - $=\operatorname{Tr}_{W}\left[\left(\hat{P}_{Q_{1}}\left(i_{1};t'\right)\otimes\hat{1}_{Q_{2}}\otimes\cdots\otimes\hat{1}_{Q_{n}}\right)\mathcal{E}_{W}^{t'\leftarrow t}\left[\hat{\rho}_{W}\left(t\right)\right]\right]$
- $= \sum_{w} \operatorname{Tr}_{W} \left[\left(\hat{P}_{Q_{1}}(i_{1}; t') \otimes \hat{1}_{Q_{2}} \otimes \cdots \otimes \hat{1}_{Q_{n}} \right) \mathcal{E}_{W}^{t' \leftarrow t} \left[\hat{P}_{W}(w; t) \right] \right] p_{W}(w; t)$
- $= \sum_{i_2,...,i_n,w} \operatorname{Tr}_W \left[\left(\hat{P}_{Q_1}(i_1;t') \otimes \hat{P}_{Q_2}(i_2;t') \otimes \cdots \otimes \hat{P}_{Q_n}(i_n;t') \right) \mathcal{E}_W^{t'} \leftarrow t \left[\hat{P}_W(w;t) \right] \right] p_W(w;t)$

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

- Can trivially express epistemic probability $p_{Q_1}\left(i_1;t'\right)$ for subsystem Q_1 to be in ontic state $\Psi_{Q_1}\left(i_1;t'\right)$ as
- $p_{Q_1}(i_1;t') = \text{Tr}_{Q_1} \left[\hat{P}_{Q_1}(i_1;t') \, \hat{\rho}_{Q_1}(t') \right]$
- $= \operatorname{Tr}_{W} \left[\left(\hat{P}_{Q_{1}} \left(i_{1}; t' \right) \otimes \hat{1}_{Q_{2}} \otimes \cdots \otimes \hat{1}_{Q_{n}} \right) \hat{\rho}_{W} \left(t' \right) \right]$
 - $=\operatorname{Tr}_{W}\left[\left(\hat{P}_{Q_{1}}\left(i_{1};t'\right)\otimes\hat{1}_{Q_{2}}\otimes\cdots\otimes\hat{1}_{Q_{n}}\right)\mathcal{E}_{W}^{t'\leftarrow t}\left[\hat{\rho}_{W}\left(t\right)\right]\right]$
- $= \sum_{w} \operatorname{Tr}_{W} \left[\left(\hat{P}_{Q_{1}}(i_{1}; t') \otimes \hat{1}_{Q_{2}} \otimes \cdots \otimes \hat{1}_{Q_{n}} \right) \mathcal{E}_{W}^{t' \leftarrow t} \left[\hat{P}_{W}(w; t) \right] \right] p_{W}(w; t)$
- $= \sum_{i_2,...,i_n,w} \operatorname{Tr}_W \left[\left(\hat{P}_{Q_1}(i_1;t') \otimes \hat{P}_{Q_2}(i_2;t') \otimes \cdots \otimes \hat{P}_{Q_n}(i_n;t') \right) \mathcal{E}_W^{t'} \leftarrow t \left[\hat{P}_W(w;t) \right] \right] p_W(w;t)$

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

- Can trivially express epistemic probability $p_{Q_1}\left(i_1;t'\right)$ for subsystem Q_1 to be in ontic state $\Psi_{Q_1}\left(i_1;t'\right)$ as
- $p_{Q_1}(i_1;t') = \operatorname{Tr}_{Q_1} \left[\hat{P}_{Q_1}(i_1;t') \, \hat{\rho}_{Q_1}(t') \right]$
- $= \operatorname{Tr}_{W} \left[\left(\hat{P}_{Q_{1}} \left(i_{1}; t' \right) \otimes \hat{1}_{Q_{2}} \otimes \cdots \otimes \hat{1}_{Q_{n}} \right) \hat{\rho}_{W} \left(t' \right) \right]$
- $= \operatorname{Tr}_{W} \left[\left(\hat{P}_{Q_{1}} \left(i_{1}; t' \right) \otimes \hat{1}_{Q_{2}} \otimes \cdots \otimes \hat{1}_{Q_{n}} \right) \mathcal{E}_{W}^{t' \leftarrow t} \left[\hat{\rho}_{W} \left(t \right) \right] \right]$
- $= \sum_{w} \operatorname{Tr}_{W} \left[\left(\hat{P}_{Q_{1}}(i_{1};t') \otimes \hat{1}_{Q_{2}} \otimes \cdots \otimes \hat{1}_{Q_{n}} \right) \mathcal{E}_{W}^{t' \leftarrow t} \left[\hat{P}_{W}(w;t) \right] \right] p_{W}(w;t)$
- $= \sum_{i_2,...,i_n,w} \underbrace{\operatorname{Tr}_W \Big[\Big(\hat{P}_{Q_1}(i_1;t') \otimes \hat{P}_{Q_2}(i_2;t') \otimes \cdots \otimes \hat{P}_{Q_n}(i_n;t') \Big) \mathcal{E}_W^{t'\leftarrow t} \Big[\hat{P}_W(w;t) \Big] \Big]}_{\text{looks like conditional probability for Bayesian propagation rule}} p_W(w;t)$

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

Definition of Quantum Conditional Probabilities

■ Motivates defining quantum conditional probabilities relating possible ontic states of subsystems Q_1, \ldots, Q_n to those of parent system $W = Q_1 + \cdots + Q_n$ by

$$\begin{aligned} p_{Q_1,...,Q_n|W}(i_1,...,i_n;t'|w;t) &\equiv \operatorname{Tr}_W \left[\left(\hat{P}_{Q_1}(i_1;t') \otimes \cdots \otimes \hat{P}_{Q_n}(i_n;t') \right) \mathcal{E}_W^{t'\leftarrow t} \left[\hat{P}_W(w;t) \right] \right] \\ &\sim \operatorname{Tr} \left[\hat{P}_{i_1}(t') \cdots \hat{P}_{i_n}(t') \mathcal{E} \left[\hat{P}_w(t) \right] \right] \end{aligned}$$

- In contrast to Born rule
 - Only defined in terms of eigenprojectors representing system's possible ontic states—not in terms of generic state vectors
 - \triangleright \mathcal{E}'_{t} | acts to "parallel transport" $P_{W}(w;t)$ from t to t' before

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

MIRACULOUS PROPERTIES

Real numbers between 0 and 1:

$$p_{Q_1,...,Q_n|W}(i_1,...,i_n;t'|w;t) \in [0,1]$$

■ Sum to 1 on first arguments:

$$\sum_{i_1,\dots,i_n} p_{Q_1,\dots,Q_n|W} (i_1,\dots,i_n;t'|w;t) = 1$$

Give Bayesian propagation rule:

$$\sum_{i_1,\dots(\text{no }i_{\alpha})\dots,i_n,w} p_{Q_1,\dots,Q_n|W}\left(i_1,\dots,i_n;t'|w;t\right) p_W\left(w;t\right) = p_{Q_{\alpha}}\left(i_{\alpha};t'\right)$$

Trivialize to deterministic result for unitary evolution:

$$p_{Q|Q}\left(i;t'|j;t\right) \equiv \operatorname{Tr}_{Q}\left[\hat{P}_{Q}\left(i;t'\right)\hat{P}_{Q}\left(j;t'\right)\right] = \delta_{ij} = \begin{cases} 1 & \text{for } i = j, \\ 0 & \text{for } i \neq j \end{cases}$$

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

MIRACULOUS PROPERTIES

■ Real numbers between 0 and 1:

$$p_{Q_1,...,Q_n|W}(i_1,...,i_n;t'|w;t) \in [0,1]$$

Sum to 1 on first arguments:

$$\sum_{i_1,\dots,i_n} p_{Q_1,\dots,Q_n|W} (i_1,\dots,i_n;t'|w;t) = 1$$

Give Bayesian propagation rule:

$$\sum_{i_1,\dots(\text{no }i_{\alpha})\dots,i_n,w} p_{Q_1,\dots,Q_n|W}\left(i_1,\dots,i_n;t'|w;t\right) p_W\left(w;t\right) = p_{Q_{\alpha}}\left(i_{\alpha};t'\right)$$

Trivialize to deterministic result for unitary evolution:

$$p_{Q|Q}\left(i;t'|j;t\right) \equiv \operatorname{Tr}_{Q}\left[\hat{P}_{Q}\left(i;t'\right)\hat{P}_{Q}\left(j;t'\right)\right] = \delta_{ij} = \begin{cases} 1 & \text{for } i = j, \\ 0 & \text{for } i \neq j \end{cases}$$

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

QUANTUM CONDITIONAL PROBABILITIES

INTERPRETIVE STEP

■ Mysterious quantities $p_{Q_1,...,Q_n|W}(i_1,...,i_n;t'|w;t)$ satisfying all these miraculous properties have existed in *formalism* all along

Our interpretation: call them probabilities!

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

KNIGHTIAN UNCERTAINTY

- Possible concern: not every conceivable conditional probability definable in this framework!
 - e.g., multiple final times, two initial ontic states at two times, non-disjoint subsystems, multiple parent systems
 - Certain hypothetical statements for ontic states don't admit generally well-defined probabilities, despite lying behind veil of uncertainty
- Physicists often use "uncertainty" and "probabilistic" interchangeably, but not economists (c.f., Frank Knight, 1921)
- But no a priori reason why all uncertainty (especially unobservable!) should be constrained to obey long-run probability frequency-ratios!
 - Would be trouble for science if true for observable phenomena, but why a problem for unobservable ontic states?

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

KNIGHTIAN UNCERTAINTY

- Possible concern: not every conceivable conditional probability definable in this framework!
 - e.g., multiple final times, two initial ontic states at two times, non-disjoint subsystems, multiple parent systems
 - Certain hypothetical statements for ontic states don't admit generally well-defined probabilities, despite lying behind veil of uncertainty
- Physicists often use "uncertainty" and "probabilistic" interchangeably, but not economists (c.f., Frank Knight, 1921)
- But no a priori reason why all uncertainty (especially unobservable!) should be constrained to obey long-run probability frequency-ratios!
 - Would be trouble for science if true for observable phenomena, but why a problem for unobservable ontic states?

J. A. BARANDES, D. KAGAN

MINIMAL MODAL INTERPRETATION

PI 2014

KINEMATICAL AND DYNAMICAL SMOOTHING

- Special cases → quantum conditional probabilities provide missing ingredients 4. (a), (b) in correspondence to classical realism
- 4. (a) Kinematical smoothing relationship between possible ontic states of Q_1, \ldots, Q_n to those of $W = Q_1 + \cdots + Q_n$ at any single instantaneous moment in time
- 4. (b) Dynamical smoothing relationship between possible ontic states of single system Q over time
 - Formula coincides with Esposito-Mukamel quantum transition rates from unravelling, Leifer-Spekkens conditional states

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

KINEMATICAL AND DYNAMICAL SMOOTHING

- Special cases → quantum conditional probabilities provide missing ingredients 4. (a), (b) in correspondence to classical realism
- 4. (a) Kinematical smoothing relationship between possible ontic states of Q_1, \ldots, Q_n to those of $W = Q_1 + \cdots + Q_n$ at any single instantaneous moment in time
- 4. (b) *Dynamical* smoothing relationship between possible ontic states of *single* system *Q* over time
 - Formula coincides with Esposito-Mukamel quantum transition rates from unravelling, Leifer-Spekkens conditional states

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

KINEMATICAL AND DYNAMICAL SMOOTHING

- Special cases → quantum conditional probabilities provide missing ingredients 4. (a), (b) in correspondence to classical realism
- 4. (a) Kinematical smoothing relationship between possible ontic states of Q_1, \ldots, Q_n to those of $W = Q_1 + \cdots + Q_n$ at any single instantaneous moment in time
- 4. (b) Dynamical smoothing relationship between possible ontic states of single system Q over time
 - Formula coincides with Esposito-Mukamel quantum transition rates from unravelling, Leifer-Spekkens conditional states
 - Lifts to linear epistemic dynamical mapping = ensemble average over ontic dynamical mapping

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

Von Neumann Measurements, Born Rule, and Error-Entropy Bound

- Von Neumann measurements yield expected results for Born-rule outcome probabilities
- Intriguing $\exp{(-S)} \ll 1$ deviations from Born rule, where $S \approx$ combined entropy of measurement device and subject system
- Similar *error-entropy bound* exists even for classical measurements: for measurement device with accuracy of n bits, correlational entropy with subject system grows by at least $\Delta S \sim \log n \leq S$, so

minimum error
$$\sim 1/n \sim e^{-\Delta S} \ge e^{-S}$$

 Recent circumstantial evidence of similar error-entropy bound from black-hole thermodynamics (e.g., Maldacena)

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

LOCALITY AND LORENTZ INVARIANCE

- EPR/Bell + GHZ/Mermin:
 - Ontic dynamics non-local (can pinpoint where non-locally appears!),
 but fully in keeping with no-communication theorem
 - No observable violations of Lorentz invariance

Source: geekpause.com

- Unlike dBB, no preferred Lorentz frame selected
 - Evade no-go theorems of Vermaas, Dickson/Clifton, Hardy, Myrvold
 - Dickson/Clifton point out inadmissible assumptions about ontic property assignments in Hardy
 - Vermaas, Dickson/Clifton, Myrvold assume existence of joint epistemic probability distributions that do not exist in MMI

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

LOCALITY AND LORENTZ INVARIANCE

- EPR/Bell + GHZ/Mermin:
 - Ontic dynamics non-local (can pinpoint where non-locally appears!),
 but fully in keeping with no-communication theorem
 - No observable violations of Lorentz invariance

Source: geekpause.com

- Unlike dBB, no preferred Lorentz frame selected
 - Evade no-go theorems of Vermaas, Dickson/Clifton, Hardy, Myrvold
 - Dickson/Clifton point out inadmissible assumptions about ontic property assignments in Hardy
 - Vermaas, Dickson/Clifton, Myrvold assume existence of joint epistemic probability distributions that do not exist in MMI

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

Conclusion

SUMMARY

SUMMARY

- Source: rhizome.org
- Presented new realist interpretation of quantum theory, called minimal modal interpretation (MMI):
 - Systems have ontic states
 - that evolve along trajectories in their Hilbert spaces
 - according to approximate/emergent ontic dynamical rules
- Introduced new general class of conditional probabilities that play central role in defining kinematical and dynamical structure of MM
- Thank you!

J. A. Barandes, D. Kagan

MINIMAL MODAL INTERPRETATION

PI 2014

30 / 30

Pirsa: 14100001 Page 60/60