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Abstract: <span>| will discuss the evolution of a quantum scalar field in a toy universe which has three stages of evolution, viz., (i) an early
(inflationary) de Sitter phase (ii) radiation-dominated phase and (iii) late-time (cosmological constant dominated) de Sitter phase. Using the
Schr\"odinger picture, the scalar field equations are solved separately for the three stages and matched at the transition points. The boundary
conditions are chosen so that field modes in the early de Sitter phase evolve from the Bunch-Davies vacuum state. | shall ook the (time-dependent)
particle content of this quantum state for the entire evolution of the universe and describe the various features both numerically and analytically. |
shall also describe the quantum to classical transition in terms of a classicality parameter which tracks the particle creation and its effect on phase
space correlation of the quantum field.</span>
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Outline

Motivational climb — What'’s the point in doing all this?

Arena: The three stage Universe with Inflation — Radiation - A

An introduction to the quantum fields — the players!

In the show - Particle creation and handle on quantum-to-classical transition
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Outline
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Motivational climb — What's the point in doing all this?

Arena: The three stage Universe with Inflation — Radiation - A

An introduction to the quantum fields — the players!

In the show - Particle creation and handle on quantum-to-classical transition

Summary and future work.
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The big picture

The large scale structures, CMB anisotropies, Cosmic Magnetic Fields ... all have primordial origins
are believed to be seeded during Inflation through quantum fluctuations.

These fluctuations have substantial amplitudes only on scales close to the Planckian length, but during
the inflationary stage they are stretched to galactic scales with nearly unchanged amplitudes.

Surely, this calls for a quantum-to-classical transition. Mechanisms like decoherence etc are invoked but
the feature is not well understood till date.

Important to understand, because the structures exist!

plus there are some more features!
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The three stage universe

[Suprit Singh, Modak, Padmanabhan PRD 2013]

e We've got (i) Inflationary de Sitter (ii) Radiation phase and (iii) Late-time accelerated de Sitter phase.

C,H,m'f tg £,
a(t) = { (2Hjyze)' /%2 b <t < tp
(Hine/Hp )Y/2 eHAt t2tA

t, = (2Hjp¢) 'and tp = (2HA) ! transition times fixed by matching.
e Hjp = eHyy = eH with € < 1. For our real universe, € ~ 10 >4,
e Better to use scale factor as the time parameter, which gives
(Ha) 1 a < el/2

L(a) = (a) ' =< (a/He) e'/2 <a< (e/e)l/?
(aeH) ! a> (e/e)l/?
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The three stage universe — the tracks!

[Suprit Singh, Modak, Padmanabhan PRD 2013]

L = (da/dt)!
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e Two length scales, Ly = 1/(He'/2¢'/2) and L,,;,, = 1/ (He'/?) define a band.

e Provide a rich terrain for non-trivial effects on quantum fields.
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Quantum fields, or essentially,

e their vacuum states are unstable under strong external fields and just like any medium show:

* Dispersive effects or Vacuum polarization

e Absorptive effects or Particle creation

¢ Flat spacetime examples: the Schwinger effect and the Casimir effect.
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Quantum fields, or essentially,

their vacuum states are unstable under strong external fields and just like any medium show:

¢ Dispersive effects or Vacuum polarization

e Absorptive effects or Particle creation
Flat spacetime examples: the Schwinger effect and the Casimir effect.
Put these players on the curved spacetime. Gravity plays the role of an external field.
With some differences here and there.

In stationary situations (timelike killing vectors exist), we can define vacuum states uniquely or so called
“in” and “out” states. Then, the horizon structures leads to non-trivial effects.
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In the cosmological playground,

e the differences show up. Its expanding! No timelike Killing vectors. So no unique vacuum.

* You can’t switch off the background - so no free fields at any time except in the past.
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In the cosmological playground,

the differences show up. Its expanding! No timelike Killing vectors. So no unique vacuum.
You can’t switch off the background - so no free fields at any time except in the past.

At best, we can introduce different constructs which probe different aspects of physics in the expanding
background and develop an intuitive feel for the various phenomena.

We have namely two pictures - the Heisenberg picture and the Schrédinger picture.

It turns out, in what we are interested, the time-dependent particle content or quantifying the
quantum-to-classical transition, the Schrédinger picture is better suited.
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The Schrodinger framework

[Mahajan and Padmanabhan 2008]
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The Schrodinger framework

[Mahajan and Padmanabhan 2008]
Essence: Fields are essentially harmonic oscillators and vacuum state is gaussian wave functional.

In an expanding background,
ds® = dt* —a* (t)dx* = a*(n) (dn® — dx*)

the frequency and mass become time-dependent.

Massless, minimally coupled scalar field
1
SI®(n,x)] = 3

Fourier decomposition

@(n,x)=j

So that in terms of ¢y
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¢ The Schrédinger equation of the wave functional

OP(pem) 1 *(dem) | 1, 2
IR Y AL (MK &F WP, m)

e admits time-dependent, form-invariant, gaussian states with vanishing mean (squeezed states)

’.

2 —
Y(dy,n) = Nexp [Otk('q]d)i] = Nexp la (m)k (1 Zk) ¢i:|

1+ z
e The dynamics just reduces to the functions,a (1) or z, (1) (Riccati type equations)

2
_2cxk_

ioy = L o Z+2ikz + (2) (22 —-1)=0

a2 2

The excitation parameter z; measures the deviation of «; from the adiabatic value.
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e The Schrédinger equation of the wave functional

OP(pem) 1 *(den) | 1, 2
R P T R Y + a2 )k dF bl )

e admits time-dependent, form-invariant, gaussian states with vanishing mean (squeezed states)

2

2 —
¢WbM—Nap[Mmmﬂ_Nap[amﬁ(lZq¢ﬂ

1+2z

¢ The dynamics just reduces to the functions, o (1) or z (1) (Riccati type equations)

2a2 1 5

a2 2

The excitation parameter z; measures the deviation of «; from the adiabatic value.
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With oy = —(ia®/2)(fi /), non-linear first order equations — second-order linear differential equation

a
ﬂk+2(a) b + K = 0

Same as the field equation for ¢!

- (kuk -’rfﬁlk)
K g — 11

And z; is related to p by:

In general, u(n) = Agsg(n) + Bysg (n).
But z; and o, depend only on the ratio fi /p; and so we just need Ry = B/ Ay.

Solving for p; given the boundary conditions completely determines evolution of the system.

Zip - Zap - Zoom

Pirsa: 14090082 Page 19/49



Instantaneous particle content

Pirsa: 14090082

For a > a; the state of the field different from the ground state.

Reasonable to compare it with instantaneous eigenstates defined at every instant obtained by adiabatically

evolving the eigenstates at some initial epoch.

n 1
Yy (g, M) = F(dy) exp l—ij dn (n + 2) w(n)]
m;

to get Cn = N)nm))

Probability Py, = |C2a[?> = Po(2n)! 22"/ (n!)222"; Py = 1/1—|z[2.

This gives the instantaneous particle content to be:

2
(ng) = Z 2nPy, 2

. 2
n=>0 1 |Zk |

(ng) is not monotonic in general. The mean occupation number can go up and down. It can be
accompanied by fluctuating quantum noise when the system is far away from classicality.
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Let’s roll out!

e Solve for the field in the three stages

(1 iHY [k ik
a k P H aH
( C, g—ika/eH | Dy pika /e-H)

Ei3k(a) + Fi3¢ (a)

om0 )] (-4

e BCis chosen such that i, ** evolves from Bunch-Davies vacuum state defined in the asymptotic past.

(1)

o Cy, Dy, Ey, Fy are fixed by matching the modes and the first derivatives at the transition points.
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Input: ~ DVI - 1280x720p@60Hz

Let’s I'OH out! Output: SDI - 1920x10B0I@BOHz

e Solve for the field in the three stages

1 iH - ik ik
a k P H aH
( Cre—ka/eH 4 D gika /eH)

Ei3k(a) + Fi3¢ (a)

(-)G-F)

e BCis chosen such that i, ** evolves from Bunch-Davies vacuum state defined in the asymptotic past.

(1)

o Cy, Dy, Ey, Fy are fixed by matching the modes and the first derivatives at the transition points.
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Let’s roll out!

e Solve for the field in the three stages

(o) ep[E_
a k P H aH
(Ck p—ika/eH | Dy pika /eH)

Ei3k(a) + Fi3¢ (a)

om0 )] (-4

o BCis chosen such that . ** evolves from Bunch-Davies vacuum state defined in the asymptotic past.

(1)

o Cy, Dy, Ey, Fy are fixed by matching the modes and the first derivatives at the transition points.
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Quantifying the degree of classicality

Pirsa: 14090082

Classicality is usually quantified by the use of Wigner distributions and is inferred from the peaking of
the distribution on the corresponding classical trajectory.

Proposal: The classicality parameter,

For our field system with gaussian states,

W(dy, i, M)

_ ()
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4

oF
+ (3x07)? C1-lzf

For a pure quantum state, C; = 0 with gy = 0. Otherwise C; € [—1, 1] when the Wigner function becomes
correlated.

2
k
2
k

V) (g?)

— 0 (i — Fedpx)

o ZIm(Zk)
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Quantifying the degree of classicality

Classicality is usually quantified by the use of Wigner distributions and is inferred from the peaking of

the distribution on the corresponding classical trajectory.

Proposal: The classicality parameter,

__ (m)
V) (g?)

For our field system with gaussian states,

i o2 2
— 0} (M — I k)

1
W(br, 1) = -
(bx, 7, M) — exp { 2

. dxop 21m(z;)
k —_— —

1+ (8} L= lzf
For a pure quantum state, C; = 0 with g, = 0. Otherwise C; € [—1, 1] when the Wigner function becomes

correlated.
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Let’s roll out!

e Solve for the field in the three stages

B 1 iH " ik ik
a k P H aH
( Cre—ka/eH 4 D gika /eH)

Ei3k(a) + Fi3¢ (a)

o -en[ 8, -] (-4

e BCis chosen such that i, ** evolves from Bunch-Davies vacuum state defined in the asymptotic past.

(1)

o Cy, Dy, Ey, Fy are fixed by matching the modes and the first derivatives at the transition points.
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Numerics Gallery

e We choose H =1 and € = 0.01,0.0001 for the numerics.

e Some very interesting features emerge.
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Numerics Gallery
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Numerics Gallery

L = (da/dt)’
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The Schrodinger framework

[Mahajan and Padmanabhan 2008]
Essence: Fields are essentially harmonic oscillators and vacuum state is gaussian wave functional.
e In an expanding background,

ds® = dt* — a*(+)dx* = a*(n) (dn? — dx*)

the frequency and mass become time-dependent.

Zip - Zap - Zoom

Pirsa: 14090082 Page 31/49



Setting the initial conditions

e The initial state is a ground state with zero particle content at some time say n =n; when a(n;) = a;.

¢ Then, the initial condition of the wave function at a = a; being the ground state wave function of an
harmonic oscillator demands,

a?k

-

(“ d“") — ik
u‘k dﬂ a;

which in turn determines Ry (a;) thereby fixing the state.

o (a;) =

or equivalently z(a;) = 0, implying
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All set?

a
ﬂk+2<a> (i + K =0

= (kuk+illk)
kg — 1
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All set?

L = (da/dt)"’
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All set?
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Numerics Gallery

e We choose H =1 and € = 0.01,0.0001 for the numerics.

¢ Some very interesting features emerge.
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Numerics Gallery
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Numerics Gallery
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Numerics Gallery

Pirsa: 14090082

0.000 |
|

e Non-zero values of z; imply departure from
the adiabatic regime.

e and a surprising memory effect! z in stage 3
(green) continues to circle a bit! The
evolution is non-adiabatic.
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Numerics Gallery
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(ng) follows power law in inflationary dS.

subsequent behaviour in the radiation phase
depends on the scale of mode.

There is a residual effect for modes that are
within the Hubble radius at the end of the
first stage.

(ng) saturates in the radiation phase
irrespective of the value of ¢.
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Swings (!) from Quantum to Classical ...

e = 0.01 e = 0.0001
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Swings (!) from Quantum to Classical ...

e =0.01 e = 0.0001
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For € ~ 10~>*, equations are the only pictures!

¢ The winding number is unmanageably high so we can look at the analytical results.

e For the inflationary dS, we have

2

L0 eH . (1) ___ H
k- aH + 2ik’ B - k\/“2H2 +1
k

¢ For the radiation phase

2ik

eH (e ve H(eH + 2iak) — e el (eH? + 2iv/eHk — 2k2))

—¢* Vel HB 4 e ¥if (eH — 2iak) (eH? + 2iy/eHk — 2k?)

gjfki (‘*2H4 +2 (aszkz + k‘*) . (e2H4 + da\/eH2I2 — 2eH2k2) Cos [2 ("e;‘/e) k ]

~2KkH ((~a + V&) eH? + 2ak*) Sin [2 (_ae;‘/é) X ] ) .

e Asymptotic (a o e/e) saturation: (nf{z])sm = e?H4%/4k*
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The third stage!

e We can approximate under suitable assumptions, viz., € < 1.

3), _ H* 2H%%ae N H? (e?H* — eH?k? + k*) a%€?

M~ 4K 4K
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The third stage!

e We can approximate under suitable assumptions, viz., € < 1.

(n®) ~ eH*  2H%*?ae N H? (e?H* — eH?k? + k*) a%€?
kDT gl 4k 4k

e How good is it?

[
Il‘l[ /

0.001 r

10-‘-r
10 "r

e

1000 104

Quite good!
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Implications for cosmology

e Assumptions made in inflationary paradigm:
(a) quantum fluctuations behave classically on Hubble exit.

(b) once classical, the fluctuations always stay classical in the subsequent stages.
What is the notion of this classicality?

We use the “classicality parameter” to define this. Then (a) is found true but (b) is not.
Sub-Hubble modes have fluctuations on them.

Implication: We should have a theory which can admit both the properties of the fields.
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