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Abstract: <span>l will outline a new topological foundation for computation, and show how it gives rise to a unified treatment of classical
encryption and quantum teleportation, and a strong classical model for many quantum phenomena. This work connects to some other interesting
topics, including quantum field theory, classical combinatorics, thermodynamics, Morse theory and higher category theory, which | will introduce in
an elementary way.</span>
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Introduction

There is an analogy between classical encryption and quantum
teleportation. extending to the foundations of computation.
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Introduction

There is an analogy between classical encryption and quantum
teleportation. extending to the foundations of computation.

|| DECRYPT CORRECT
ENCRYPT MEASURE
KEY ENTANGLED
Encrypted communication Quantum teleportation

New idea. We can make this precise using defects between

topological field theories.
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Strings and correlation

Consider the following equation, where ¢ is a joint state and o* is

the corresponding joint measurement:
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We change notation and use a 1d topological field theory.
where this is the first Reidemeister move.
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Strings and correlation

Consider the following equation, where ¢ is a joint state and o* is

the corresponding joint measurement:

We change notation and use a 1d topological field theory.
where this is the first Reidemeister move.

We can investigate consequences of this equation in different settings.
» Classical computation.
The state o is perfectly correlated: o = {00} U {11}.
» Quantum theory.
The state o is maximally entangled: |o) = |00) + [11)
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Surfaces and logic

We now think about basic properties of copying, comparing and

deleting classical information:
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These are the laws obeyed by surfaces up to deformation!
So we change notation and use a 2d topological field theory.
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We now consider ‘interactions’ between our lines and surfaces.

We focus on 3 basic interaction types:

Measurement Preparation Controlled
operation

We require these to be invertible, because all processes in physics

and computer science are (arguably) reversible at a fundamental level.

Also. M and P are inverse.
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Interactions

We now consider ‘interactions’ between our lines and surfaces.

We focus on 3 basic interaction types:

Measurement Preparation Controlled
operation

We require these to be invertible, because all processes in physics

and computer science are (arguably) reversible at a fundamental level.
Also, M and P are inverse.

This is a 0-1-2 topological field theory with defects.

Pirsa: 14090076 Page 35/119



Pirsa: 14090076 Page 36/119




Pirsa: 14090076 Page 37/119




Pirsa: 14090076 Page 38/119




Pirsa: 14090076 Page 39/119




Pirsa: 14090076 Page 40/119




Topological structure

Here is the heuristic quantum teleportation diagram:
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Topological reasoning

We can use the topological formalism to prove interesting things.
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Topological reasoning

We can use the topological formalism to prove interesting things.

Bend up the surface:

This is dense coding!

So we have a topological proof of equivalence with teleportation,
independent of the Hilbert space formalism.
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Models of computation

What do these pictures have to do with computation?

» We can look for 0-1-2 TFTs with defects in any symmetric

monoidal 2-category.
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Models of computation

What do these pictures have to do with computation?

» We can look for 0-1-2 TFTs with defects in any symmetric

monoidal 2-category.

» The choice of 2-category represents the ‘theory of physics’, or
‘model of computation’, in which we choose to work.

» For quantum computation, we choose the 2-category 2Hilb of

2—Hilbert spaces.
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Models of computation
What do these pictures have to do with computation?

» We can look for 0-1-2 TFTs with defects in any symmetric
monoidal 2-category.

» The choice of 2-category represents the ‘theory of physics’, or
‘model of computation’, in which we choose to work.

» For quantum computation, we choose the 2-category 2Hilb of

2—Hilbert spaces.

» For classical computation, we choose the 2-category 2Gpd of

oroupoids, actions on sets, and spans.

[n this way. we obtain strong classical ‘toy models™ of quantum

phenomena, with some resemblance to Rob Spekkens’ toy theory.
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2—Hilbert spaces

Definition. The symmetric monoidal 2-category 2Hilb is built
from the following structures:

» O-cells are finite-dimensional 2-Hilbert spaces
» 1-cells are linear functors, meaning F(f 4+ ¢g) = F(f) + F(qg)

» 2-cells are natural transformations
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» O-cells are finite-dimensional 2-Hilbert spaces
» 1-cells are linear functors, meaning F'(f +¢g) = F'(f) + F(g)

» 2-cells are natural transformations

This is a standard structure in higher representation theory.

Pirsa: 14090076 Page 80/119



2—Hilbert spaces

Definition. The symmetric monoidal 2-category 2Hilb is built
from the following structures:
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» 2-cells are natural transformations
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2—Hilbert spaces

Definition. The symmetric monoidal 2-category 2Hilb is built
from the following structures:

» O-cells are natural numbers

» 1-cells are matrices of Hilbert Spaces

» 2-cells are matrices of linear maps
This is a standard structure in higher representation theory.
There is a matrix calculus, just as for ordinary Hilbert spaces.
A quote from Schrodinger:

“I knew of [matrix mechanics|, but I felt discouraged

by the methods ... which appeared difficult to me”
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Quantum teleportation

Theorem. Solutions to the teleportation equation in 2Hilb

correspond exactly to quantum teleportation schemes.

- O
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Quantum teleportation

Theorem. Solutions to the teleportation equation in 2Hilb

correspond exactly to quantum teleportation schemes.

((67))

This is exactly the data that would appear in a quantum

information textbook.
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Encrypted communication

Theorem. Solutions to the teleportation equation in 2Gpd

correspond to perfectly secure classical encryption schemes.
erfectly secure encryption schemes are exactly Latin squares
Perfect] ypt 1 tly Lat

plaintext

o [ | 23] 4
“l214]1]3
g 3111412
214131211
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Encrypted communication

Theorem. Solutions to the teleportation equation in 2Gpd

correspond to perfectly secure classical encryption schemes.
Perfectly secure encryption schemes are exactly Latin squares:

plaintext

o [ |21 3] 4
“12(4]1]3
=131 ]4]2
214131211

They are axiomatized by quasigroups. which are sets equipped
binary operators {x, /,\} such that the following hold for all x,y:

y=xx*x(x\y)=ax\(rxy)=(y/x)*xx=(yxx)/x
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Encrypted communication

Theorem. Solutions to the teleportation equation in 2Gpd

correspond to perfectly secure classical encryption schemes

Perfectly secure encryption schemes are exactly Latin squares:

plaintext
o | {21314
“12(4]1]3
=13]1]4]2
214030211

They are axiomatized by quasigroups. which are sets equipped

binary operators {x. /., \} such that the following hold for all x,y:

y=xx*x(x\y)=ax\(rxy)=(y/x)*x=(yxx)/x

Using key k., encryption is (—) * &, and decryption is (=) / k.
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Encrypted communication

Theorem. Solutions to the geometrical equation in 2Gpd

correspond to perfectly secure encryption schemes.

We can use a quasigroup to build such a solution as follows:

decryption decoded creation of

nmessage random data

e
ciphertext '
{'ll('t-_\'[)linll o. =
pl;lill[(‘.\'t

creation of correlated undisturbed
private keys plaintext
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Encrypted communication

Theorem. Solutions to the geometrical equation in 2Gpd

correspond to perfectly secure encryption schemes.

We can use a quasigroup to build such a solution as follows:

decryption decoded creation of
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(!’ e /l) ._-"‘ /l' :
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G| x G
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Encrypted communication

Theorem. Solutions to the geometrical equation in 2Gpd

correspond to perfectly secure encryption schemes.

We can use a quasigroup to build such a solution as follows:

decryption decoded t't‘(';lliull of
(a,b, k) — (a.bk=", a/k) message random data
(p* k) /
e :
C l])ll( tt< \
3 0
e1cl \[)Iiull
(p. k) v
plaintext
P . .
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private keys plaintext
[, (k. E) o
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Encrypted communication

Theorem. Solutions to the geometrical equation in 2Gpd
correspond to perfectly secure encryption schemes.
We can use a quasigroup to build such a solution as follows:

decryption decoded creation of
(a,b. k) — (a.bk=", a/k) message random data
(p*k)/k

('i])|l('t'[<‘_\'t
G| x G

encryption
(p k) — (p* k. k)

p[;lill[(‘.\'t

P . . .
creation of correlated undisturbed
private |\'<‘_\‘%~ ])I;lilll{\NI
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Encrypted communication

Theorem. Solutions to the geometrical equation in 2Gpd

correspond to perfectly secure encryption schemes.

We can use a quasigroup to build such a solution as follows:

decryption decoded creation of
(a,b. k) v— (a.bk="' a/k) Message random data
(p*k)/k
>

(l])|l( t[( \

G| » 0

elery [)I |nn
(p, k) — (

plaintext
P . . .
creation of correlated undisturbed
private keys plaintext
[ (k. k) o

Encryption is invertible. Consistent with foundations of computation.

A successful attacker must access the entire system.
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The Big Picture

Ihc‘url\ Of -‘"’ quantunn

T 2Hilb

quantum teleportation

teleportation theory

( Bennett. Brassard. Crépeau,

Jozsa. Peres. Wootters)

Theorem. Structure-preserving maps T — 2Hilb correspond to
implementations of quantum teleportation.
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The Big Picture

theory of 0.1.2-dimensional
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The Big Picture

theory of 0.1.2-dimensional
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The Big Picture

theory of 0.1.2-dimensional

topological manifolds

( Baez., Dolan. Lurie. //a)f}/;/ns'\

Iu[nr‘nj_"'\(‘;“
quantunn

o 1301-(1“1:2 field [l}(‘u[“\

~ ™~ Z (Atiyah, Segal)

/ :
N\
T 2Hilb

quantum teleportation

theory of quantuin

Ihc'ur'.\

teleportation

Theorem. Every implementation of quantum teleportation gives
rise to a 2d topological quantum field theory.
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The Big Picture
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quantum teleportation
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teleportation

2Gpd

combinatorics of finite groups
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The Big Picture

///. ~_ 7

/ h
theory of S \ quantuin
I(‘l(‘[n rtation T ) 2H11l) the iy
\ quantum teleportation /
\ //

. . w\\\\
classical cneryption ]; S
—— 2Gpd

combinatorics of finite groups

7 (2 quantization

Theorem. The map (Q transports encrypted communication into
quantum teleportation.
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The Big Picture

///,/ - ~ .\\\\ Z
ILH‘HI‘I\ of T _“;' \H.ll
Ii‘|t‘[ml'l.‘lliug| 2 .1 )
\ Y
. ) ‘\‘\\ ’/_/
classical encryption  E S 0
—— 2Gpd —

Theorem. The map () transports encrypted communication into
quantum teleportation. Related to Werner’s combinatorial

construction.
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The Big Picture

/ : N
N\
T 2Hilb
equivalence '
( Werner) /¢ \ ,_/’/‘
DC —— 2Gpd —

theory of
dense coding

Theorem. ‘lTeleportation and dense coding are syntactically
equivalent.
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The Big Picture

theory of mutually

[ltt|)'|;1>-t‘<l |);1.-('.-~

MUB _— Bordoi2 —
ﬁ T 2Hilb
/ . yd
DC — 2Gpd —
theory of

dense coding

Theorem. Syntactic construction of teleportation and dense
coding from mutually-unbiased bases.
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Future directions

Try to extend results to

geometrical field theories

Treatment of mixed states and completely-positive maps

Combinatorial models for other phenomena classical

information-theoretic key distribution?

[nformation processing with 9 0’&?

topological branes — can you d\
teleport a topological quantum

string”’
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Future directions

e 'Iry to extend results to

geometrical field theories

e ‘Treatment of mixed states and completely-positive maps

e Combinatorial models for other phenomena classical

information-theoretic key distribution?

e [nformation processing with ? 0"){?

topological branes — can you d\
teleport a topological quantum
g

string?

Thank you!
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