Title: Maximal supergravity, holography and the Romans mass

Date: Sep 12, 2014 01:30 PM

URL: http://pirsa.org/14090071

Abstract: At large N, an important sector of the ABJM field theory defined on a stack of N M2-branes can be described holographically by the D=4 N=8 SO(8)-gauged supergravity of de Wit and Nicolai. Since its inception, the latter has been tacitly assumed to be unique. Recently, however, a one-parameter family of SO(8) gaugings of N=8 supergravity has been discovered, the de Wit-Nicolai theory being just a member in this class. I will explain how this overlooked family of SO(8)-gauged supergravities is deeply related to electric/magnetic duality breaking in four dimensions. I will then discuss some predictions that can be made about the family of dual large-N field theories that these supergravities define, focusing on the structure of superconformal phases and the RG flows between them. I will finally argue that when the gauging is chosen to be related, but different, to the SO(8) one, the D=4 N=8 family arises as consistent truncation of massive IIA on the six-sphere, with the Romans mass identified as the electric/magnetic duality-breaking parameter.

Pirsa: 14090071 Page 1/48

The holography of electric/magnetic duality breaking

Oscar Varela

Harvard

J. Tarrio, OV, 1311.2933

A. Borghese, G. Dibitetto, A. Guarino, D. Roest, OV, 1211.5335

Perimeter Institute

12 September 2014

イロ > イ部 > イモ > イモ > モ りへで

Pirsa: 14090071 Page 2/48

Pirsa: 14090071 Page 3/48

AdS₄/CFT₃ and gauged sugra

N M2 branes at a conical singularity

- Place N M2 branes a the apex of a metric cone $(C(M_7), dr^2 + r^2 ds^2(M_7))$.
- Near the horizon, the D=11 supergravity solution is [Freund, Rubin '80]

$$AdS_4 \times M_7$$
$$G_4 \sim \text{vol}(AdS_4)$$

with M_7 Einstein space with positive curvature.

• For $M_7 = S^7$, $C(S^7) = \mathbb{R}^8$ and the solution is N = 8.

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

The field theory on the stack of N M2 branes

- The field theory on the stack of N M2 branes has been identified by BLG/ABJM
 [Bagger, Lambert '06, Gustavssonn '07, Aharony, Begman, Jafferis, Maldacena '08]
- ABJM is a 3D Chern-Simons theory \mathcal{L}_0 with $\mathrm{U}(N)_k \times \mathrm{U}(N)_{-k}$ gauge group coupled to chiral multiplets.
- \mathcal{L}_0 is conformal and, for k = 1, 2, it is maximally supersymmetric and displays SO(8) global invariance:

$$\mathcal{L}_0 \longleftrightarrow M$$
-theory on $AdS_4 \times S^7/\mathbb{Z}_k$

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

The field theory on the stack of N M2 branes

- The field theory on the stack of N M2 branes has been identified by BLG/ABJM [Bagger, Lambert '06, Gustavssonn '07, Aharony, Begman, Jafferis, Maldacena '08]
- ABJM is a 3D Chern-Simons theory \mathcal{L}_0 with $\mathrm{U}(N)_k \times \mathrm{U}(N)_{-k}$ gauge group coupled to chiral multiplets.
- \mathcal{L}_0 is conformal and, for k = 1, 2, it is maximally supersymmetric and displays SO(8) global invariance:

$$\mathcal{L}_0 \longleftrightarrow M$$
-theory on $AdS_4 \times S^7/\mathbb{Z}_k$

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

Away from conformality

• Correspondence holds at a conformal fixed point. More interesting field theory regimes?

$$\mathcal{L}_0 + \mathcal{L}_1 \longleftrightarrow M$$
-theory on $AdS_4 \times S^7/\mathbb{Z}_k$ +perturbations

N

• Better control at large N:

Large
$$N \mathcal{L}_0 + \mathcal{L}_1 \longleftrightarrow 11D$$
 sugra on $AdS_4 \times S^7/\mathbb{Z}_k$ + perturbations

• Closure:

Operators in \mathcal{L}_1 closed under OPE \longleftrightarrow 'Well-defined' 4D perturbations above AdS₄

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

Gauged supergravity and AdS/CFT

Gauged supergravity is a powerful tool to explore interesting physics of the dual field theory:

Conformal phases \longleftrightarrow AdS critical points of the scalar potential

RG flows \longleftrightarrow Domain walls

Finite temperature effects \longleftrightarrow AAdS black holes

 $\text{Chemical potentials} \quad \longleftrightarrow \quad \text{Non-trivial gauge field profiles}$

Non-relativistic phases \longleftrightarrow Deformations of AdS

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

Pirsa: 14090071

Gauged supergravity and AdS/CFT

Gauged supergravity is a powerful tool to explore interesting physics of the dual field theory:

Conformal phases \longleftrightarrow AdS critical points of the scalar potential

RG flows \longleftrightarrow Domain walls

Finite temperature effects \longleftrightarrow AAdS black holes

 $\text{Chemical potentials} \quad \longleftrightarrow \quad \text{Non-trivial gauge field profiles}$

Non-relativistic phases \longleftrightarrow Deformations of AdS

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

0 / 42

Pirsa: 14090071 Page 9/48

AdS₄/CFT₃ and gauged sugra

D = 4 N = 8 SO(8)-gauged supergravity

A prime gauged supergravity is the 4D N=8 SO(8)-gauged supergravity [de Wit, Nicolai '82]

- Higher-dim origin: M-theory on S^7 [de Wit, Nicolai '87, '13; Pilch, Nicolai 12] Smaller truncations [Cvetic, Duff, Pope, et al.]
- Critical points lift to well-known $AdS_4 \times S^7$ M-theory backgrounds.
 - The N=8 SO(8) point lifts to Freund-Rubin.
 - Other points with less susy lift to solutions with warped, stretched, squashed metrics on S^7 and fluxes, e.g. [Corrado, Pilch, Warner]
- Captures all possible mass deformations of k = 1, 2 ABJM:

$$\mathcal{L}_1 \sim m_{IJ}^2 X^I X^J + m_{IJ} \psi^I \psi^J$$

• SO(8) : Global symmetry of k=1,2 ABJM \longleftrightarrow Gauge group of the supergravity \longleftrightarrow Isometry of S^7

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

Gauged supergravity and AdS/CFT

Well defined: a consistent truncation of 11D sugra down to 4D gauged sugra exists.

- Truncation: Keep 4D fields above AdS_4 , rather than 11D fields above $AdS_4 \times S^7$
- Consistent: 4D dynamics compatible with M-theory
- 4D gauged supergravity: gaugings arise due to truncation on a non-trivial internal space.
- Gaugings: interactions, including non-abelian gauge groups, a scalar potential, etc.

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

Page 11/48

N M2 branes at a conical singularity

- Place N M2 branes a the apex of a metric cone $(C(M_7), dr^2 + r^2 ds^2(M_7))$.
- Near the horizon, the D=11 supergravity solution is [Freund, Rubin '80]

$$AdS_4 \times M_7$$
$$G_4 \sim \text{vol}(AdS_4)$$

with M_7 Einstein space with positive curvature.

• For $M_7 = S^7$, $C(S^7) = \mathbb{R}^8$ and the solution is N = 8.

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

AdS₄/CFT₃ and gauged sugra

D = 4 N = 8 SO(8)-gauged supergravity

A prime gauged supergravity is the 4D N=8 SO(8)-gauged supergravity [de Wit, Nicolai '82]

- Higher-dim origin: M-theory on S^7 [de Wit, Nicolai '87, '13; Pilch, Nicolai 12] Smaller truncations [Cvetic, Duff, Pope, et al.]
- Critical points lift to well-known $AdS_4 \times S^7$ M-theory backgrounds.
 - The N=8 SO(8) point lifts to Freund-Rubin.
 - Other points with less susy lift to solutions with warped, stretched, squashed metrics on S^7 and fluxes, e.g. [Corrado, Pilch, Warner]
- Captures all possible mass deformations of k = 1, 2 ABJM:

$$\mathcal{L}_1 \sim m_{IJ}^2 X^I X^J + m_{IJ} \psi^I \psi^J$$

• SO(8): Global symmetry of k=1,2 ABJM \longleftrightarrow Gauge group of the supergravity \longleftrightarrow Isometry of S^7

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

AdS₄/CFT₃ and gauged sugra

D = 4 N = 8 SO(8)-gauged supergravity

A prime gauged supergravity is the 4D N=8 SO(8)-gauged supergravity [de Wit, Nicolai '82]

- Higher-dim origin: M-theory on S^7 [de Wit, Nicolai '87, '13; Pilch, Nicolai 12] Smaller truncations [Cvetic, Duff, Pope, et al.]
- Critical points lift to well-known $AdS_4 \times S^7$ M-theory backgrounds.
 - The N = 8 SO(8) point lifts to Freund-Rubin.
 - Other points with less susy lift to solutions with warped, stretched, squashed metrics on S^7 and fluxes, e.g. [Corrado, Pilch, Warner]
- Captures all possible mass deformations of k = 1, 2 ABJM:

$$\mathcal{L}_1 \sim m_{IJ}^2 X^I X^J + m_{IJ} \psi^I \psi^J$$

• SO(8) : Global symmetry of k=1,2 ABJM \longleftrightarrow Gauge group of the supergravity \longleftrightarrow Isometry of S^7

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

Pirsa: 14090071 Page 15/48

Electric/Magnetic duality

Maxwell's equations

$$d*F = 0, \qquad dF = 0$$

are invariant under electric/magnetic duality transformations:

$$F \rightarrow \tilde{F} \equiv *F \qquad \Rightarrow \qquad d * \tilde{F} = 0, \qquad d\tilde{F} = 0.$$

$$d * \tilde{F} = 0,$$

$$d\tilde{F} = 0.$$

All electric/magnetic duality frames are equivalent.

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

No EM duality in the presence of sources

In the presence of sources,

$$d * F = *j, \qquad dF = 0$$

Maxwell's equations are no longer EM duality invariant.

The physics now does depend on the duality frame.

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

• The EM duality group of the $U(1)^n$ theory

$$\mathcal{L} = \frac{1}{2} \delta_{IJ} F^I \wedge *F^J, \quad I = 1, \dots, n,$$

is $\mathrm{Sp}(2n,\mathbb{R})$. The eoms + Bianchis remain invariant under a symplectic rotation of the electric, F^I , and magnetic, $\tilde{F}_I = \frac{\partial \mathcal{L}}{\partial F^I}$, field strengths.

• When non-minimally coupled scalars are included,

$$\mathcal{L} = g_{ij}dz^{i} \wedge *dz^{j} + \frac{1}{2} \text{Im} \mathcal{N}_{IJ} F^{I} \wedge *F^{J} + \frac{1}{2} \text{Re} \mathcal{N}_{IJ} F^{I} \wedge F^{J} ,$$

the combined set of field equations + Bianchi identities remain invariant under the isometry group $G \subset \operatorname{Sp}(2n,\mathbb{R})$ of the scalar manifold.

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

• The EM duality group of the $U(1)^n$ theory

$$\mathcal{L} = \frac{1}{2} \delta_{IJ} F^I \wedge *F^J, \quad I = 1, \dots, n,$$

is $\mathrm{Sp}(2n,\mathbb{R})$. The eoms + Bianchis remain invariant under a symplectic rotation of the electric, F^I , and magnetic, $\tilde{F}_I = \frac{\partial \mathcal{L}}{\partial F^I}$, field strengths.

• When non-minimally coupled scalars are included,

$$\mathcal{L} = g_{ij}dz^{i} \wedge *dz^{j} + \frac{1}{2} \text{Im} \mathcal{N}_{IJ} F^{I} \wedge *F^{J} + \frac{1}{2} \text{Re} \mathcal{N}_{IJ} F^{I} \wedge F^{J} ,$$

the combined set of field equations + Bianchi identities remain invariant under the isometry group $G \subset \operatorname{Sp}(2n,\mathbb{R})$ of the scalar manifold.

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

• The EM duality group of the $U(1)^n$ theory

$$\mathcal{L} = \frac{1}{2} \delta_{IJ} F^I \wedge *F^J, \quad I = 1, \dots, n,$$

is $\mathrm{Sp}(2n,\mathbb{R})$. The eoms + Bianchis remain invariant under a symplectic rotation of the electric, F^I , and magnetic, $\tilde{F}_I = \frac{\partial \mathcal{L}}{\partial F^I}$, field strengths.

When non-minimally coupled scalars are included,

$$\mathcal{L} = g_{ij}dz^{i} \wedge *dz^{j} + \frac{1}{2} \text{Im} \mathcal{N}_{IJ} F^{I} \wedge *F^{J} + \frac{1}{2} \text{Re} \mathcal{N}_{IJ} F^{I} \wedge F^{J} ,$$

the combined set of field equations + Bianchi identities remain invariant under the isometry group $G \subset \operatorname{Sp}(2n,\mathbb{R})$ of the scalar manifold.

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

Gauged supergravity

Promote $G_0 \subset G \subset Sp(2n,\mathbb{R})$ to a local symmetry, while introducing minimal couplings:

$$d \to D = d + gA^I t_I$$

Add further terms, of order g (Yukawas) and g^2 (potential) to the lagrangian in order to restore susy.

EM invariance is broken. The physics depends on the symplectic frame.

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

Electric/Magnetic duality

Maxwell's equations

$$d*F = 0, \qquad dF = 0$$

are invariant under electric/magnetic duality transformations:

$$F \rightarrow \tilde{F} \equiv *F \qquad \Rightarrow \qquad d * \tilde{F} = 0, \qquad d\tilde{F} = 0.$$

$$d * \tilde{F} = 0,$$

$$d\tilde{F} = 0.$$

All electric/magnetic duality frames are equivalent.

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

No EM duality in the presence of sources

In the presence of sources,

$$d * F = *j, \qquad dF = 0$$

Maxwell's equations are no longer EM duality invariant.

The physics now does depend on the duality frame.

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

Gauged supergravity

Promote $G_0 \subset G \subset Sp(2n,\mathbb{R})$ to a local symmetry, while introducing minimal couplings:

$$d \to D = d + gA^I t_I$$

Add further terms, of order g (Yukawas) and g^2 (potential) to the lagrangian in order to restore susy.

EM invariance is broken. The physics depends on the symplectic frame.

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

Gauged supergravity with magnetic charges

The gauge group G_0 needs to be a subgroup of the Eoms + Bianchis symmetry group G:

$$G_0 \subset G \subset Sp(2n, \mathbb{R})$$

Can magnetic charges be turned on?

$$d \to D = d + gA^I t_I + g\tilde{A}_I \tilde{t}^I$$

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

Gauged supergravity with magnetic charges

The gauge group G_0 needs to be a subgroup of the Eoms + Bianchis symmetry group G:

$$G_0 \subset G \subset Sp(2n, \mathbb{R})$$

Can magnetic charges be turned on?

$$d \to D = d + gA^I t_I + g\tilde{A}_I \tilde{t}^I$$

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

• The EM duality group of the $U(1)^n$ theory

$$\mathcal{L} = \frac{1}{2} \delta_{IJ} F^I \wedge *F^J, \quad I = 1, \dots, n,$$

is $\mathrm{Sp}(2n,\mathbb{R})$. The eoms + Bianchis remain invariant under a symplectic rotation of the electric, F^I , and magnetic, $\tilde{F}_I = \frac{\partial \mathcal{L}}{\partial F^I}$, field strengths.

When non-minimally coupled scalars are included,

$$\mathcal{L} = g_{ij}dz^{i} \wedge *dz^{j} + \frac{1}{2} \text{Im} \mathcal{N}_{IJ} F^{I} \wedge *F^{J} + \frac{1}{2} \text{Re} \mathcal{N}_{IJ} F^{I} \wedge F^{J} ,$$

the combined set of field equations + Bianchi identities remain invariant under the isometry group $G \subset \operatorname{Sp}(2n,\mathbb{R})$ of the scalar manifold.

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

Gauged supergravity with magnetic charges

The gauge group G_0 needs to be a subgroup of the Eoms + Bianchis symmetry group G:

$$G_0 \subset G \subset Sp(2n, \mathbb{R})$$

Can magnetic charges be turned on?

$$d \to D = d + gA^I t_I + g\tilde{A}_I \tilde{t}^I$$

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

Gauged supergravity with magnetic charges

The gauge group G_0 needs to be a subgroup of the Eoms + Bianchis symmetry group G:

$$G_0 \subset G \subset Sp(2n, \mathbb{R})$$

Can magnetic charges be turned on?

$$d \to D = d + gA^I t_I + g\tilde{A}_I \tilde{t}^I$$

Yes!

- Magnetically charged scalars dualised into tensors.
- Duality-covariant formalism: embedding tensor

[Nicolai, Samtleben '00; de Wit, Samtleben, Trigiante '05]

Example: Massive type IIA on Calabi-Yau. [Louis, Micu '02]

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

Gauged supergravity with magnetic charges

The gauge group G_0 needs to be a subgroup of the Eoms + Bianchis symmetry group G:

$$G_0 \subset G \subset Sp(2n, \mathbb{R})$$

Can magnetic charges be turned on?

$$d \to D = d + gA^I t_I + g\tilde{A}_I \tilde{t}^I$$

Yes!

- Magnetically charged scalars dualised into tensors.
- Duality-covariant formalism: embedding tensor

[Nicolai, Samtleben '00; de Wit, Samtleben, Trigiante '05]

Example: Massive type IIA on Calabi-Yau. [Louis, Micu '02]

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

(ungauged) D = 4 N = 8 supergravity

- D=4 N=8 supergravity has duality group $\mathrm{E}_{7(7)}\subset Sp(56,\mathbb{R})$. [Cremmer, Julia '79]
- \bullet The scalars parametrise $\mathrm{E}_{7(7)}/\mathrm{SU}(8).$

	$\mathrm{E}_{7(7)}$	SU(8)
$g_{\mu u}$	1	1
$A_{\mu}^{I},A_{\mu I}$	56	1
ϕ	133 - 63	1
ψ^{lpha}_{μ}	1	8
λ	1	56

• Higher dimensional origin: M-theory on T^7 .

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

17 / 42

Pirsa: 14090071 Page 31/48

D = 4 N = 8 SO(8)-gauged supergravity

- Promote the 28 (electric) Abelian vectors featuring in the SL(8)-duality-frame lagrangian to gauge fields of SO(8). [de Wit, Nicolai '82]
- introduce minimal couplings

$$d \to D = d + gA^I t_I$$

- Introduce Yukawas (O(g)) and a scalar potential $(O(g^2))$.
- Higher-dimensional origin: M-theory on S^7 [de Wit, Nicolai '87, '13; Pilch, Nicolai 12]

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

D = 4 N = 8 SO(8)-gauged supergravity

- Promote the 28 (electric) Abelian vectors featuring in the SL(8)-duality-frame lagrangian to gauge fields of SO(8). [de Wit, Nicolai '82]
- introduce minimal couplings

$$d \to D = d + gA^I t_I$$

- Introduce Yukawas (O(g)) and a scalar potential $(O(g^2))$.
- Higher-dimensional origin: M-theory on S^7 [de Wit, Nicolai '87, '13; Pilch, Nicolai 12]

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

New N = 8 SO(8)-gauged supergravity

A one-parameter family of SO(8)-gaugings

[Dall'Agata, Inverso, Trigiante '12]

• Gauge SO(8) dyonically through electric and magnetic gauge fields:

$$d \to D = d + g \cos \omega A^I t_I + g \sin \omega \tilde{A}_I \tilde{t}^I$$

ullet ω reflects a one-parameter ambiguity of the SL(8) symplectic frame [de Wit, Nicolai '13;

Dall'Agata, Inverso, Marrani '14]

$$\omega \in U(1) \subset Sp(56,\mathbb{R})/E_{7(7)}$$

• Recover de Wit-Nicolai for $\omega = 0$. Distinct theories for $\omega \in [0, \frac{\pi}{8}]$.

The physics depends on the symplectic frame:

the physics should depend on ω .

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

SU(3) sector Electric/Magnetic duality 3 The SU(3)-invariant sector of new N=8 supergravity • All vacua with at least SU(3) invariance • Holographic RG flows Oscar Varela (Harvard) E/M in AdS₄/CFT₃

Pirsa: 14090071 Page 35/48

SU(3) sector Electric/Magnetic duality 3 The SU(3)-invariant sector of new N=8 supergravity • All vacua with at least SU(3) invariance • Holographic RG flows Oscar Varela (Harvard) E/M in AdS₄/CFT₃

Pirsa: 14090071 Page 36/48

The SU(3)-invariant sector

N = 2 supergravity + 1 VM + 1HM

$$E_{7(7)} \supset SU(1,1)_T \times SU(2,1) \times SU(3)$$
.

• Gravitini: SU(8) branches as

$$8 \rightarrow 1 \oplus 1 \oplus 3 \oplus \overline{3}$$

• Vectors:

$$56 \rightarrow (4,1,1) \oplus \text{non-singlets}$$

• Scalars:

$$\mathcal{M}_{\mathrm{SK}} = \left(\frac{\mathrm{SU}(1,1)}{\mathrm{U}(1)}\right)_T$$
 and $\mathcal{M}_{\mathrm{QK}} = \frac{\mathrm{SU}(2,1)}{\mathrm{SU}(2)_S \times \mathrm{U}(1)_U}$,

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

23 / 42

SU(3) sector All vacua with at least SU(3) invariance

The SU(3)-invariant sector: $\omega = 0$ vacuum structure

	ω		
	g.m.	V_*/g^2	
$\mathcal{N} = 8$, SO(8)	1	-6	

$$\mathcal{N} = 2, \, SU(3) \times U(1)$$
 1 -7.794

$$\mathcal{N} = 1, G_2$$
 2 -7.192

[Warner '83]

Oscar Varela (Harvard)

E/M in AdS_4/CFT_3

Pirsa: 14090071 Page 38/48

SU(3) sector All vacua with at least SU(3) invariance

The SU(3)-invariant sector: $\omega \neq 0$ vacuum structure.

	$\omega = 0$		$\omega = \frac{\pi}{16}$		$\omega = \frac{\pi}{8}$	
	g.m.	V_*/g^2	g.m.	V_*/g^2	g.m.	V_*/g^2
$\mathcal{N}=8, \mathrm{SO}(8)$	1	-6	1	-6	1	-6
$\mathcal{N}=2,~\mathrm{SU}(3)\! imes\!\mathrm{U}(1)$	1	-7.794	1	-7.912	2	-8.354
			1	-9.672		
$\mathcal{N}=1,\mathrm{G}_2$	2	-7.192	1	-7.075	1	-7.040
			1	-7.436	2	-7.943
			1	-9.264		
$\mathcal{N}=1,\mathrm{SU}(3)$	_	_	1	-11.353	1	-10.392

[Borghese, Dibitetto, Guarino, Roest, OV '12]

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

25 / 42

Pirsa: 14090071

Pirsa: 14090071 Page 40/48

Pirsa: 14090071 Page 41/48

Pirsa: 14090071 Page 42/48

Pirsa: 14090071 Page 43/48

SU(3) sector All vacua with at least SU(3) invariance

The SU(3)-invariant sector: $\omega \neq 0$ vacuum structure.

	$\omega = 0$		$\omega = \frac{\pi}{16}$		$\omega = \frac{\pi}{8}$	
	g.m.	V_*/g^2	g.m.	V_*/g^2	g.m.	V_*/g^2
$\mathcal{N}=8, \mathrm{SO}(8)$	1	-6	1	-6	1	-6
$\mathcal{N}=2,~\mathrm{SU}(3){ imes}\mathrm{U}(1)$	1	-7.794	1	-7.912	2	-8.354
			1	-9.672		
$\mathcal{N}=1,\mathrm{G}_2$	2	-7.192	1	-7.075	1	-7.040
			1	-7.436	2	-7.943
			1	-9.264		
$\mathcal{N}=1,\mathrm{SU}(3)$	_	_	1	-11.353	1	-10.392

[Borghese, Dibitetto, Guarino, Roest, OV '12]

Oscar Varela (Harvard)

E/M in AdS₄/CFT₃

25 / 42

Pirsa: 14090071 Page 45/48

Pirsa: 14090071 Page 46/48

Outlook Recap and outlook • A new family of SO(8)-gauged N=8 supergravities [Dall'Agata, Inverso, Trigiante '12] • Have charted the vacuum structure with at least SU(3) symmetry. • Interpolating domain walls. • M-theory uplift? [de Wit, Nicolai '13] • Field theory interpretation?

Pirsa: 14090071 Page 47/48

E/M in AdS₄/CFT₃

Oscar Varela (Harvard)

Outlook Recap and outlook • A new family of SO(8)-gauged N=8 supergravities [Dall'Agata, Inverso, Trigiante '12] • Have charted the vacuum structure with at least SU(3) symmetry. • Interpolating domain walls. • M-theory uplift? [de Wit, Nicolai '13] • Field theory interpretation?

Pirsa: 14090071 Page 48/48

E/M in AdS₄/CFT₃

Oscar Varela (Harvard)