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Abstract: <span>Plasma-filled magnetospheres can extract energy from a spinning black hole and provide the power source for avariety of observed
astrophysical phenomena. These magnetospheres are described by the highly nonlinear equations of force-free electrodynamics, or FFE. Typically
these equations can only be solved numerically. In thistalk | will explain how to analytically obtain several infinite families of exact solutions of the
full nonlinear FFE equations very near the horizon of a maximally spinning black hole, where the energy extraction takes place.</span>
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EXTRAVAGANT ENERGY SIGNALS IN THE SKY

The sky contains a variety of objects, for example pu and
, that produce extravagantly energetic signals such as
collimated jets of electromagnetic radiation
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EXTRAVAGANT ENERGY SIGNALS IN THE SKY

The sky contains a variety of objects, for example pulsars and
, that produce extravagantly energetic signals such as
collimated jets of electromagnetic radiation

Pulsars

NASA's Chandra X-ray Observatory image
shows a fast moving jet of particles produced
by a rapidly rotating neutron star.
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EXTRAVAGANT ENERGY SIGNALS IN THE SKY

The sky contains a variety of objects, for example pulsars and
, that produce extravagantly energetic signals such as
collimated jets of electromagnetic radiation

uasars
Pulsars Q

In this image, the lowest-energy X-rays

NASA's Chandra X-ray Observatory image X
Chandra detects are in red, while the

shows a fast moving jet of particles produced

by a rapidly rotating neutron star. nedium-energy X-rays are green, and the

highest-energy ones are blue.

Pirsa: 14090065 Page 7/66



EXTRAVAGANT ENERGY SIGNALS IN THE SKY

Many of these powerful jets - quasars - are generated by the
giant rotating black hole surrounded by a magnetosphere with
a plasma at the galaxy's center.

Energy extraction from such a black hole is widely believed to be described by
the highly nonlinear equations of force-free electromagnetism (FFE)
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FORCE-FREE EQUATIONS

Maxwell's equations are

V. F* =g
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FORCE-FREE EQUATIONS
V. F* = g

F,uu — V]J,AV o VVA#. IS the matter charge current

The electromagnetic stress-energy tensor is

1 ,,
TE;:J‘I\/I _ F;mcFua o 4ngFaﬁF(n)"

Which is not covariantly conserved by itself,

uv o v
Vilgy = —Fud”.
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FORCE-FREE EQUATIONS

Maxwell's equations are
V. F* = J¥
,“L .
where

FIU’V — VHAV - VVAp is the matter charge current

The electromagnetic stress-energy tensor is

1
T;wl _ F;mFu o 4gquadF(m’

Which is not covariantly conserved by itself,
I' jb’

the relativistic form of the Lorentz force density
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FORCE-FREE EQUATIONS

The full stress-energy tensor

T = Tt + The

matter

irsa: 14090065 Page 12/66



FORCE-FREE EQUATIONS

The full stress-energy tensor

T* = T +The

matter
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FORCE-FREE EQUATIONS

The full stress-energy tensor

T =Ty + Tk

matter
IS always conserved
V., T = ()
u -
Force-free electrodynamics (FFE) describes

systems in which most of the energy resides in the
electrodynamical sector of the theory, so that

™" =~ Ty
Vo Iey = 0.

This approximation is known as the “force-free” condition, since by it is equivalent to the requirement
that the Lorentz force density vanishes

F';mji, -
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FORCE-FREE EQUATIONS

In the study of systems obeying this condition
. ] 17
[4llu\7 —_ (].

the current may be defined as the right hand side Maxwell's equation rather than independently specified.

A complete set of equations of motion for the electromagnetic sector is obtained by appending to

Maxwell's equations the force free condition

(ViaFu) =0
V, FH = JH
FJ" =0

\ © HVT

N
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FORCE-FREE EQUATIONS

In the study of systems obeying this condition
- I} _
F.J"=0.

the current may be defined as the right hand side Maxwell's equation rather than independently specified.

A complete set of equations of motion for the electromagnetic sector is obtained by appending to
Maxwell's equations the force free condition

(ViaFu =0 dF =0,
V, FHw = JH § diF=g7,
Fogv—gq commeen (JAxE =0,

\ Ty

N
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FORCE-FREE EQUATIONS

In the study of systems obeying this condition
I—d‘ jll pmm (]
v ¢
the current may be defined as the right hand side Maxwell's equation rather than independently specified.

A complete set of equations of motion for the electromagnetic sector is obtained by appending to

Maxwell's equations the force free condition

(ViaFu =0 dF =0,
vV, = JH ¢ diF=J,

F,uw]u = () e \j AxF =0,

N

In which
]‘ — (]1 denotes the electromagnetic field strength
‘ T ,
% the Hodge dual A\ the wedge product d the adjoint of the exterior derivative
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FORCE-FREE EQUATIONS

I“;u/ju -

It is widely believed that astrophysical black holes are typically surrounded by
magneto-spheres composed of an electromagnetic plasma governed by these
equations. Hence they are of
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FORCE-FREE EQUATIONS

F;IVJI} -

It is widely believed that astrophysical black holes are typically surrounded by
magneto-spheres composed of an electromagnetic plasma governed by these
equations. Hence they are of

BACKGROUND

(1973) Michel found a monopole solution for Schwarzschild black hole

(1976) Blandford showed that for Kerr there are parabolic EM-configurations

(1977) Blandford-Znajek find energy extracting models for (slowly rotating) Kerr black hole
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FORCE-FREE EQUATIONS

F;IVJI} -

It is widely believed that astrophysical black holes are typically surrounded by
magneto-spheres composed of an electromagnetic plas ma govemed by these
equations. Hence they are of

BACKGROUND

(1973) Michel found a monopole solution for Schwarzschild black hole

(1976) Blandford showed that for Kerr there are parabolic EM-configurations
(1977) Blandford-Znajek find energy extracting models for (slowly rotating) Kerr black hole
(1985)-(2014) Numerical GRMHD simulations

A FULL ANALYTICAL SOLUTION IS NOT KNOWN and
NUMERICAL RESULTS BREAK DOWN FOR EXTREME KERR
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SYMMETRY IN THE UNIVERSE
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SYMMETRY IN THE UNIVERSE

Energy extraction is possible only for rotating Kerr black holes, and the greater
the rotation, the easier it becomes.
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SYMMETRY IN THE UNIVERSE

Energy extraction is possible only for rotating Kerr black holes, and the greater
the rotation, the easier it becomes.

Moreover it is a process that occurs near the black hole horizon, and is
largely insensitive to the physics at spatial infinity

This suggests that much of the physics of force- free electrodynamic energy
extraction can be captured by studying the near horizon region of maximally
rotating extreme Kerr black holes, such as the one in Cygnus X-1
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SYMMETRY IN THE UNIVERSE

Foqv— Analytic solutions to FFE are only known
f”’J - for slowly rotating black holes.

| What happens to the magenetospheres for extreme black holes?

e.g. can we solve the FFE equations in the NHEK region.
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SYMMETRY IN THE UNIVERSE

Foqv— Analytic solutions to FFE are only known
f“’J - for slowly rotating black holes.

| What happens to the magenetospheres for extreme black holes?
e.g. can we solve the FFE equations in the NHEK region.

- Is there any symmetry realized in the Universe?

e.g. do solutions to FFE realize the symmetry enhancement of the NHEK geometry
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SYMMETRY IN THE UNIVERSE

F o Tv — Analytic solutions to FFE are only known
1“"] - for slowly rotating black holes.

| What happens to the magenetospheres for extreme black holes?

e.g. can we solve the FFE equations in the NHEK region.

- Is there any symmetry realized in the Universe?

e.g. do solutions to FFE realize the symmetry enhancement of the NHEK geometry

dail e: one hopes that this analytic approach
will enable a better understanding of astrophysical
black hole magnetospheres and energy extraction.
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PLAN

Introduction: Force-Free Electrodynamis

NHEK
Technique and energy extraction

New solutions to FFE

F? #£0. F? =0,
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FROM KERR TO NHEK

The Kerr metric describes a rotating black hole with angular momentum J and the mass M . In Boyer
Lindquist coordinates the line element is

ds® = — '\i (d!ﬂ — asin® d(l(_’))h + ;dﬁz - MI;: / [(f‘z + (1.2) dé — a :lf]h + 2dé?,
where
9 A o _ o J
A=7r°-2M7 +a°, Y =7 4 a2 cos?é. a= N

There is an event horizon at

TH =M+ vVM? — a2, la| < M.

This last bound is saturated by the so-called
angular momentum

, which carries the maximum allowed

IJ| = M2,
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FROM KERR TO NHEK

We are interested in the region very near the horizon of extreme Kerr, described by the so-called Near
Horizon Extreme Kerr (NHEK) geometry
It can be obtained by a limiting procedure from the Kerr metric in usual Boyer-Lindquist coordinates

Y3 F—M A " t
r:I . gd=20, O=0¢—

t = . ‘ :
2M AM 2M

A—0
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FROM KERR TO NHEK

We are interested in the region very near the horizon of extreme Kerr, described by the so-called Near
Horizon Extreme Kerr (NHEK) geometry
It can be obtained by a limiting procedure from the Kerr metric in usual Boyer-Lindquist coordinates

Y3 F—M . A t
r:I . 0 =460. O= 0@ —

t = : ‘ :
2M AM 2M

A—0

This procedure yields the NHEK line element in

2
. o dr . . .
ds®* = 2JT |—r*dt* + — % d6* + A*(do + rdt)?
T
where { € 0C,00), T € :[l. x0), 0 € :{)4 7? O~ O+ 27

2sin 6 | 4+ cos*#
\:” = . and ) :
| + cos* @ ['(6) .

—
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FROM KERR TO NHEK: ISOMETRIES

A crucial feature of the NHEK region is that the
enhanced
U(1) x U(1) SL(2,R) x U(1)
Kerr isometry group

This enhanced symmetry governs the dynamics of the near- horizon region of extreme Keri

The U(1) rotational symmetry is generated by the Killing vector field
Wo = 8.

The time translation symmetry becomes part of an SL(2,R) isometry group generated by the Killing vector fields
I{[] f(')g all & (),»
H, = V20,

1 Y 1 ]
H V2 [ (I“ } J) ad, — tro. )
2 re r
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FROM KERR TO NHEK: ISOMETRIES

A crucial feature of the NHEK region is that the
enhanced
U(1) x U(1) SL(2,R) x U(1)
Kerr isometry group

This enhanced symmetry governs the dynamics of the near- horizon region of extreme Keri

The U(1) rotational symmetry is generated by the Killing vector field
Wo = 0O,

The time translation symmetry becomes part of an SL(2,R) isometry group generated by the Killing vector fields
I{[] f(')g —T (),»
H, = V20,

1/, 1 1
H \./2[ (f“ - ) Oy — trd, d,
2 2 r

these satisfy the SL(2,R) x U(1) commutation relations,
(Hy, Hy) = ¥H.,  [H., H.|=2H,
“1—(]. ][.] = (), :H'U- [{U: = ().
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FROM KERR TO NHEK: ISOMETRIES

Acrucial feature of the NHEK region |is that the

enhanced

U(1) x (1) SL(2,R) x U(1)
Kerr iIsometry group

| This enhanced symmetry govdrns the dynamics of the near- honzon region of extreme Kerr |

The U(1) rotational symmetry is gener®ed by the Killing vector field
WQ - 3¢.

The time translation symmetry becomes part of an SL( 2,R) Isometry group generated by the Killing

Hy=to —ro,,
”t st \/éah

H. =2 [; (:.‘* i :2) faN s W : :),,]
these satisfy the SL(2,R) x U(1) commutation relations,
By, He|= TH,, eulH, H.|=2H,
[Wo, Hy] = 0.

vector fields
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FROM KERR TO NHEK: GLOBAL COORDINATES

The Poincare coordinates cover only the part of the NHEK geometry outside the horizon of
the original extreme Kerr. Global coordinates in NHEK are found by

COST — COS Y sSinT COST — SIn T cot U
r - \ t , ¢=¢+In _
Sin v COS7 COos Y 1l + sinTcscy

In these new coordinates the line element becomes

ds? = 2JT [(=d7? + dy?) esc? ¢ + d6? + A% (dp — cot ¥ d7)°]
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FROM KERR TO NHEK: GLOBAL COORDINATES

The Poincare coordinates cover only the part of the NHEK geometry outside the horizon of
the original extreme Kerr. Global coordinates in NHEK are found by

COST — COS Y SInT COST — SIn T cot U
r - \ t \ ¢ =@+ In _
sin v COS7 COs Y 1 + sinTcscy

In these new coordinates the line element becomes
2 P [ 2 . 2 2 2 2
ds® = 2JT [(—dr? + dy?) esc® ¥ + d6? + A* (dp — cotypdr)?]

where 7 € (—00,00), ¢¥,0 € |0,7] and ¢ ~ @ + 27

In global coordinates a useful complex basis for the SL(2,R)xU(1) Killing vectors is

Ly =1e""sinty(—cotyd, Fidy + 0,)
L:) — ?()—
Qo = —10,. obeying [Lo,L+] = FLa, [L+,L-) = 2L,

Qo, L) =0, (Qo, Lo] = 0,
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TECHNIQUE: EXPLOITING THE SYMMETRIES

In general FFE equations are highly nonlinear and can only be solved numerically.
However in NHEK the symmetries can be exploited to simplify the analysis.

Given one solution of the force-free equations, another can always be generated by the action of an
isometry. Therefore the solutions must lie in representations of SL(2,R)xU(1

We look for axisymmetric solutions which lie in the so-called highest-weight representations of SL(2.R) obeying
L. F =0,
[‘I,;,F = hl
ﬁ(‘)IJF — ()
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TECHNIQUE: EXPLOITING THE SYMMETRIES

In general FFE equations are highly nonlinear and can only be solved numerically.
However in NHEK the symmetries can be exploited to simplify the analysis.

Given one solution of the force-free equations, another can always be generated by the action of an
isometry. Therefore the solutions must lie in representations of SL(2,R)xU(1

We look for axisymmetric solutions which lie in the so-called highest-weight representations of SL(2.R) obeying

L F=0,
L, F =hF,
E(‘)I,F — ()

where L, is the Lie derivative w/respect to the vector field V and h is a constant characterizing the representation

The last condition requires that F be U(1)-invariant, while the first two conditions state that Fisin a
highest-weight representation of SL(2, R) with weight h.

Since L, 1s complex, all of these solutions are complex. However we will show that the real and
imaginary parts of these solutions surprisingly also solve the force-free equations and hence provide

physical field configurations.

In the ensuing analysis we will find force-free solutions obeying
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ENERGY AND ANGULAR MOMENTUM FLUX

The NHEK geometry possesses an axial U(1) symmetry generated by
l‘ 0 — ()(_-,
as well as a time-translation symmetry generated by

H, =20,

It is therefore natural to define energy and angular momentum in NHEK as the conserved quantities
associated with these vectors respectively.

Given a solution to the force-free equations one can compute the stress-tensor
7}112 _ T;”/

and thence obtain the associated NHEK energy current
E L

IE = HYT,,,
L — 7

I — ‘ 0 T’JU'
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ENERGY FLUX

R is the entirety of the NHEK Poincare patch, then by Stokes' Theorem, the previous equation implies the energy

conservation relation " -
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ENERGY FLUX

R is the entirety of the NHEK Poincare patch, then by Stokes' Theorem, the previous equation implies the energy

conservation relation " B

the past horizon (y

These quantities, smooth across the horizon, are most conveniently computed in global coordinates, as

AE} / dr / do [ dp &5,
AE;, / :l.—[ do [ dg &,
AFg / ci.’/ do / dy €,

Pirsa: 14090065
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ENERGY FLUX

R is the entirety of the NHEK Poincare patch, then by Stokes' Theorem, the previous equation implies the energy

conservation relation N -

These quantities, smooth across the horizon, are most conveniently computed in global coordinates, as

where the integrands correspond to the energy flux densit
)

I rf density per solid
" ' : s - angle on the horizon and the boundary of the throat
.A:I'.” / l!."/ {i”/. il; (t”. iNgie ( ( | 1 € ( 1 f €
& = Vv (£V2H!) T,
AFE, / dr [ «lfﬂ/ dy &g, ; )
. n o . [ .

. vV —0 N'T_.J

(
AEg / dr / 11”/ dy €, Where o is the induced 3-metric on the boundary of the throat and n is
J - JI JA the

» outward unit vector normal to this boundary, while y denotes the

netric on the event horizon, which has null generator H

A completely analogous story holds for the angular momentum flux, with L and L replac ing £ and E, respectively.
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SUMMARY OF RESULTS

F? £0.
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SUMMARY OF RESULTS
F? £0.
A ;I”X(:)‘ L? (PL.+ Qo).
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SUMMARY OF RESULTS

F? £ 0.

P, ~ [k
-'l(h.k} _;”- Z‘( .)‘I’ wk-m)C7 (P L.+ Qo).

Max. Symmetric: A, ,, with h=0 and k=0

€ Highest Weight: A, ,, with h non 0 and k=0

Descendants A, ., with h and k non O

Page 46/66



Pirsa: 14090065

SUMMARY OF RESULTS

F? £0.

Max. Symmetric: A, ,, with h=0 and k=0

€ Highest Weight: A, ., with h non 0 and k=0

Descendants A, ., with h and k non O
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SUMMARY OF RESULTS

F2 0. F? =0,

Angy = =57 3" (5) @onsmi @ L.+ Qo). Ano) = VAP A8,

Max. Symmetric: A, 5, with h=0 and k=0 # Highest Weight: A, o, with h =1 and k=0

€ Highest Weight: A, ,, with h non O and k=0 Descendants A , ., with h=1 and k non O

Descendants A, ., with h and k non O

Pirsa: 14090065 Page 48/66



SUMMARY OF RESULTS

F2 0. F? =0,

-'l{h.k} :}If][ X (t)‘z’ L; (PL.+Qo), :1(1.[)) L ‘Ij.\f)(lﬁ.

Max. Symmetric: A, 5, with h=0 and k=0 # Highest Weight: A, o, with h =1 and k=0
€ Highest Weight: A, ,, with h non O and k=0 Descendants A , ., with h=1 and k non O

Descendants A, ., with h and k non O

Alc.d) [ dh Z: ler(RRA iy + de(R)SA
b X k=0

All these solutions will have non trivial energy and angular momentum currents
but vanishing total flux @ the boundary.
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RESULTS

Consider the vector potentia
) - ;
Vs — COL W ( ay +
‘u_(].U‘ IU ( t 17 vd ) actually eliminate the ®L, term here by a gauge

a‘])EJ transformation we keep it to facilitate the
o 2]} ((I) ]- 4 T (le) s generalizations of the next section.
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RESULTS

Consider the vector potential

-"I_U.U‘ — [j[; (('U[ i.'(lT j'l(_‘)

For the maximally symmetric case we could

“])(J transformation we keep it to facilitate the
- 211 ((I) L 4 T (le) s generalizations of the next section.

where P, is a function of 8 only and

®(1,7) = e " sin .

A(0,0)is SL(2,R) x U(1) invariant

ﬁ],. -4:(1.(1) _— ﬁ]. ,A(U.U) - Ec,)(.-A((J.(l) = 0.

actually eliminate the ®L, term here by a gauge
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ESULTS

We construct large families of U(1) axisymmetric solutions to the force-free equations in highest
weight representations labeled by a real parameter h.

An axisymmetric highest weight vector potential with weight h obeys

L; Ay, 0,
.C; 'l L’.lt.
Lq, A 0

The solutions degenerate for the case h = 1.
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ESULTS

We construct large families of U(1) axisymmetric solutions to the force-free equations in highest
weight representations labeled by a real parameter h.

An axisymmetric highest weight vector potential with weight h obeys

L. Ay 0,
L. A h A
L‘r‘J 1‘. {]

The solutions degenerate for the case h = 1.

These conditions are solved by
Aho) o % (cot Y dr — 1dy)
id" P,
2J1
where P, is a function of the 6 and ®(t1,p) obeys

L‘.[_ _ (1)" 0, L‘,]‘H‘])h - h‘l’h‘ L‘,QII(I)L 0.

J((l)/‘. T (2|‘
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ESULTS

The field strength [ )y = (1/1[;“(]‘ IS given by
F ¢ / P, cse® ¢ d d P (« av ( ()
(:)'
/ P(dl Q / Peoty L, AQ P, (1 Q e}
2J1 :

The Hodge dual of this expression is
i iph ,
*Fino 2JTVA (h=1)P,QoAO+ P, (Pcot Ly, AQo+ Lo AQ

D" P, Observe that when h = 1 the current
/ n g \
Tin (9 ”-\l-_.'l h 14(2-1' vanishes t is a solution to free

Maxwell egs. hence a trivial solutio
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RESULTS

SL(2, R) invariance of NHEK guarantees that any finite SL(2, R) transformation of the above highest
weight solutions are also solutions.

If the equations were linear, this would immediately imply that the SL(2, R) descendants (i.e. the fields obtained by
acting with the raising operator L of these solutions, which are infinitesimal transformations, are also solutions.

The reason for this is simple. If we start with the vector potential given by the k'" descendant,

A hk) = Eﬁ Aoy = — flf):l Z k D LT (P L.+ (Jn) >
r, L 2JT ” ! )

=
1
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AEALITY CONDITION AND SUPERPOSITION

Reality condition

So far the solutions have been complex. Physically we are interested in real solutions.
In general the real or imaginary part of a solution to a nonlinear equation will not itself solve the equation.
owever the real part of the vector potential leads to dual field strengths and currents which are the real parts of
H 1l | part of ti tor potential leads to dual field strength 1d currents whicl t [ f
the original ones. Since Q, has constant phase, the real or imaginary parts of anything proportional to Q,, is itself
proportional to Q.. It follows that the real or imaginary parts of all the solutions, Re[A and Im[A,, . ], are

themselves solutions, although no longer simple descendants of a highest-weight solution.

It is important to note that these physical solutions no longer have a complex F<. Rather, we find that F= may
be positive or negative at different points in the spacetime.

The arguments of the preceding two subsections are readily generalized to imply that the general linear

combination G x
Alc,d) = [ dh Y [ck(R)RAwK + di(R)SAp]

or arbitrary real functions ¢x(h) and dk(h) is a real solution to the force free equations.
This follows because every term on the r.h.s of gives both a *F and a J proportional to Q,,, hence FFE are satisfied.

What has happened here is that we have effectively linearized the equations: the conditions that *F and J be
proportional to Q, are linear conditions which imply the full nonlinear equation.
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ESULTS: NULL SOLUTIONS

A different highest-weight solution with h = 1, which is nontrivial but has “null” F< = 0.

We suspect that it is some kind of limit of the null solutions for full Kerr found in Jacobson et. al., but
have not verified the details.

Consider the gauge field . Fio tWAPdO A (dr + de
N ‘/l(l.U) = lI}.\P (19. iDAP
AW
P(F)) can be an arbitrary regular function and 2JT doOA(VLs - L Q
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ESULTS: NULL SOLUTIONS

A different highest-weight solution with h = 1, which is nontrivial but has “null” F< = 0.

We suspect that it is some kind of limit of the null solutions for full Kerr found in Jacobson et. al., but
have not verified the details.

Consider the gauge field . Fio tWAPdO A (dr + de
N ‘A(I.U) = VAP (19. iDAP
p(g) can be an arbitrary regular function and 2JI doA (WL, - L Q

L — —(T+Y
ll’(’?', U) = —C ( ),
a scalar function U(1)xU(1) eigenfunction

L, W=,
Lo,V = 0.

It does not lie in a scalar highest-weight representation of SL(2,R) because it is not annihilated by L+.

V(AP +20'P)

2J1
@ (AP + 20 P) n)
o W - Lo+ Q Ju,0 AN *F10) =0
w [ tWA“P lcotvdr A du + (dr + d) A dyg Since both are
b P proportional 1o dr + dy
gy N (Whe = lo+Q orWL, - L, +Q
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ESCENDANTS, REALITY, SUPERPOSITION AND FLUXES

The situation here is similar to the non-null case.

Using the relation

it is easily seen that all descendants of both

‘7(1-0) propto dr + dy *F:]i()) propto dr + dv
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ELECTRIC AND MAGNETIC FIELDS

To visualize the physical properties of these solutions, we animate the electric and magnetic field strengths

Figure 1: Electric field strength EZ (left) and magnetic field strength B2 (right) evaluated at Poincare time for a

non-null solution for the solution R F . The black hole is the point at the center of the box

2,0

2 il Al % S TiL T .
14 — IJHIJ h:/ —_ _(/j‘ 1‘;.;1/. { H (I()(]{)}
where s the 4-vector of a static observer

132 13“[}“ B" = ("H(*[")f”" n Poincare coordinates
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FORCE-FREE ELECTRODYNAMICS
AROUND EXTREME KERR BLACK HOLES

MARIA J. RODRIGUEZ . ‘
8 o

Thanks!
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