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Abstract: <span>A class of d-level quantum states called "magic states’, whose initial purpose was to enable universal fault-tolerant computation
within error-correcting codes, has a surprisingly broad range of applications. We begin by describing their structure with respect to the Clifford
hierarchy, and in terms of convex geometry before proceeding to their applications. They appear to have some relevance to the search for
SIC-POVMsiin certain prime dimensions. A version of the CHSH non-local game, using a d-ary aphabet and Pauli measurements, has an optimal
guantum strategy using magic states. Finaly, magic states exhibit nice symmetries (balanced, minimum uncertainty) with respect to Pauli
measurements and consequently could find applications in areas like cryptography.</span>
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Other Dimensions?

Multiple qubits are very well studied
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Structure STC POVM Balanced

Other Dimensions?

Multiple qubits are very well studied

Q: What can we gain by looking at d-level systems (qudits) instead?

A: Probably not anything too dramatic, however..
Practical: Robustness to noise in quantum computation, key distribution

Increased efficiency for ancilla-assisted fault-tolerance schemes
T. Durt, N. J. Cerf, N. Gisin, and M. Zukowski

“Security of quantum key distribution with entangled qutrits"

Earl T. Campbell

“Enhanced fault-tolerant quantum computing in d-level systems”
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Structure STC POVM Balanced

Other Dimensions?

Multiple qubits are very well studied

Q: What can we gain by looking at d-level systems (qudits) instead?
A: Probably not anything too dramatic, however..
Practical: Robustness to noise in quantum computation, key distribution
Increased efficiency for ancilla-assisted fault-tolerance schemes

Fundamental: New phenomena: single-particle KS contextuality with qutrit,
(im)possibility of state-independent contextuality via Pauli
measurements for (odd) even Hilbert space dimension

(Im)possibility of certain geometrical structures e.g., Mutually
Unbiased Bases. Structure of state space is not a ball!

Today: | will discuss a useful & interesting family of states and gates
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[Structure] STC POVM Balanced

The U, /3 gate and its uses

o UQC = (Cliffords. Uy /g)
UQC# (Cliffords)

P. O. Boykin, T. Mor, M. Pulver, V. Roychowdhury and F. Vatan.

A new universal and fault-tolerant quantum basis
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The U, /3 gate and its uses

o UQC = (Cliffords. U /g)
UQC# (Cliffords)

o Teleportation-based UQC

D. Gottesman and |. L. Chuang,

Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations
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The U, /3 gate and its uses

o UQC = (Cliffords. Uy /g)

UQC# (Cliffords)
o Teleportation-based UQC

@ Iransversal for R-M codes

B. Zeng, H. Chung, A. Cross and |. Chuang,

Local unitary versus local Clifford equivalence of stabilizer and graph states,
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[Structure] STC POVM

The U, /3 gate and its uses

A. M. Childs,

Secure assisted quantum computation

Balanced

UQC = (Cliffords. U /)
UQC# (Cliffords)

Teleportation-based UQC
Transversal for R-M codes
Topological Protection (3D)

Secure assisted UQC
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The U, /3 gate and its uses

UQC = (Cliffords. U, /5)

UQC# (Cliffords)
Teleportation-based UQQC'
Transversal for R-M codes
Topological Protection (3D)

Secure assisted UQC

Measurement-based UQ)C' with
graph states

M. Silva, V. Danos, E. Kashefi and H. Ollivier,

A direct approach to fault-tolerance in measurement-based quantum computation via teleportation
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The U, /3 gate and its uses

UQC = (Cliffords. U /)
UQC# (Cliffords)

Teleportation-based UQC
Transversal for R-M codes
Topological Protection (3D)

Secure assisted UQC

Measurement-based UQ)C' with
graph states

Optimal CHSH game with

(|00) +[11))/v/2
e Blind UQC

A. Broadbent, J. Fitzsimons and E. Kashefi,

Universal blind quantum computation,
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Structure of Pauli/Clifford groups

G = Pauli Group Clifford Group
C={C|CGCT =g}

Cy={U|UGUT C C}

D. Gottesman and I. L. Chuang,
Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations
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Structure of Pauli/Clifford groups

g — ]’;lll]i (::l'nllp (:'““'( ”.(1 Cire up ® Ii)ii()]l

¢ = {c)jogct = g}

C; = {U|UGU' c C}

We will focus on single, p-level particles

o Generalized 0, /0. : X|j)=|j+1modp) Z|j)=w'|j) (w=e>"/P)
. - Loz v 7z . -~

o Displacement operators, D, ., = w? “*X*Z* form Pauli group G

D. Gottesman and |. L. Chuang,
Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations
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Magic gates VM are generalized U, 3 gates

Q: What are all the diagonal gates M € SU(p) from third level of hierarchy?
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[Structure] STC POVM

Magic gates VM are generalized U, 5 gates

Q: What are all the diagonal gates M € SU(p) from third level of hierarchy?

MXM' =w<C 1T
({“1 l1'. hzl})

A: p? gates M (=.7.¢€) varying over =.7. ¢
;»2(/» — 1) non-Clifford M varying over =,

Q0

These M form an abelian group: =

Z:
Zg; X Z,
Ly X L

X
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[Structure] STC POVM Balanced

Magic gates VM are generalized U, 3 gates

Q: What are all the diagonal gates M € SU(p) from third level of hierarchy?

MXM =weC\ry o
(L3 21]2])

A: [}:; gateS -\[( Z.7Y. € ] Varying over -. -I'.( E ZP
_ 7 7

p*(p — 1) non-Clifford M varying over =. ¢ € Lp, 7 € L,

v

These M form an abelian group: =

_
L
-7
Lag
_
4

X X
NN

_—
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[Structure] STC POVM

Magic gates VM are generalized U, 3 gates

Q: What are all the diagonal gates M € SU(p) from third level of hierarchy?

MXMt = weC
(13

A: p? gates M (z.7.¢€) varying over =.7. ¢
;»2(/» — 1) non-Clifford M varying over =,

N

[)
])

These M form an abelian group: =

N N
X
N N

X
X
N

An more convenient way of parameterizing M is via cubic polynomials

'H--'.”:—-—‘lt') [’

diag(1.i

2a+6b+3¢ u—-—fih—-—(ir')

Map,.c=

diag(1,& x- P

ZA vb,rlf\"’—)li\"—f‘nlf|/'.></.‘ p
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“All primes are odd except two,
which is the oddest prime of alll”

Q: What are

Magic

0Q

dia Jonal gates M € SU(p) from third level of hierarchy?

MXM? =w€(-'([1 0”[1])

~ 1

. 3 / - 1 P -
A: P gates ) varying over z,7,€ € L.
p- N varying over z,€ € Zy,, 7 € Z;‘,.
Zt.; = .2
These M form an abelian group: = { Zg x Zs =
Z,, y 4 %I' X Zl’ p>3

An more convenient way of parameterizing M is via cubic polynomials

diag(1, ie+20+4c) p=2
Mty avagiiyc R i) p=3 (£=e"/9)
ARS LR Ak / N
Zg‘ ._,r\_,“‘l‘ ).II\ 'I"/I\/\\\/I‘ I; ; (..A.. — pe“ (TN }
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[Structure] SIC POVM CHSH Balanced

B “All primes are odd except two,
which is the oddest prime of alll”

Q: What are dia__onal gates M € SU(p) from third level of hierarchy?

J.[)(A[T =w‘('([1 (1)”[1])
o z

A: p?® gates ] €) varying over 2. ~. € € Jin.
2

p M var Perhaps, in Quantum Information,
three is the second oddest prime!

ZLg p=2

These M form an abelian group: = { Zg x Zs p—3

Lp X Lp X Ly p>3

An more convenient way of parameterizing M is via cubic polynomials

diagL, 7> ey p=2
‘\[”"’-" = ,/,‘””( 1-5.2”*(”)*3"-i.”*“h*“r) p= 3 (£ =c¢ ‘2"".«‘"'”)
P L e T
Z;‘.g\,"}‘ )]\ 'I"/r></r‘ I’ ; (‘A’, — p“ t/1 }
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Geometry: Magic States and Gates
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Geometry: Magic States and Gates
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[Structure] STC POVM

Geometry: Magic States and Gates

‘”> — {‘ﬁ;”h|_>
HVH| =+ (14 72 %
‘ >< ‘ — E il T

‘fu.hw) — \ /u.h.f" +>

|H)

ak®+bk*+ck|7.
I 3wk FUE ek )

Balanced
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Geometry: Magic States and Gates

— \ /u.b.f'|+>

|_fu.f:,r‘>
3y X .2 ck
l_ ZA- “‘;:A bk=+ck |/'>

VP
@ |fab.c) are eigenvectors of Clifford gates
@ |fub.c) seem to be the most non-stabilizer states in the equatorial plane
@ M, . seem to be the most non-Clifford unitaries (Jamiotkowski )
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Geometry: Magic States and Gates

‘.fu.iu') - \ /u.h.f'| +>

|_fu.f:,r‘>
3y X .2 ck
l_ ZA- “‘;:A bk= +ck |/'>

VP
@ |fab.c) are eigenvectors of Clifford gates
@ |fub.c) seem to be the most non-stabilizer states in the equatorial plane
@ M, . seem to be the most non-Clifford unitaries (Jamiotkowski )
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(WH-covariant) SIC-POVMs

In dimension N @ {|¢;), j =

_{“[: i" f|d> €T,z €

’ 1 e e . .
where D, ., = w? X*Z*% satisfying

N?

Z (Vi = NIy and [(¢;] 'A--.—:_J'>i2 TN+

J=1

Pirsa: 14090006 Page 25/59



Structure SIC POVM] Balanced

(WH-covariant) SIC-POVMs

In dimension N : {|¢;). j=1..... N’
={D(z,z)|Vfia), T,z ¢

¢ 1 e e . .
where D, ., = w?® X*Z*, satisfying

N2
S 10Xyl = NIn and (0] dns)
=1
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(WH-covariant) SIC-POVMs

In dimension N :

)

where D, .y = w2 X' 77, satisfying

biXhjl = Ny and [(¥;|dns)|* =

Zauner conjecture:

For all Hilbert space dimension NV, |t{4) can be found in the largest

eigenspace of an order 3 Clifford unitary C' ;1o _17(r.1y s.t. CF =1
(13 221D

N =3k + 2
k+1
k+1

I
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(WH-covariant) SIC-POVMs & Magic states

Connecting SICs & MUBs
D. M. Appleby,

“SIC-POVMs and MUBs: Geometrical relationships in prime dimensions”

e For p > 3, magic states coincide with second most famous MUB
construction — the Alltop MUB construction

@ For ﬂxed a '_: Z‘rn |<./'u.h.t' ./‘H.h’.(">| - df:,h”‘r.r" -+ [l - ‘)‘],_f,’ )‘,r"l\/[_?

o Complete set p+1 MUBs = {|j).j € Z,} U{|fab.c). b.c € Ly}
(@ = 0 : Standard/lvanovic/Stabilizer, a # 0 : Alltop)

= Standard & Alltop MUBs are unitarily equivalent under M, .
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Structure SIC POVM] Balanced

(WH-covariant) SIC-POVMs & Magic states

Connecting SICs & MUBs

D. M. Appleby,
“SIC-POVMs and MUBs: Geometrical relationships in prime dimensions”

e For p > 3, magic states coincide with second most famous MUB
construction — the Alltop MUB construction

o For flxed a '_: Zp- |<./'u.h.t' ./‘H.!J’.f">| — "“h,h'r"'r',f-’ + [l - f)‘],_f,f ]\/[_J

o Complete set p+ 1 MUBs = {[)).j € Zp} U{|fap.c).b.c € Ly}
(a = 0 : Standard/lvanovic/Stabilizer, a # 0 : Alltop)

= Standard & Alltop MUBs are unitarily equivalent under M, ,
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(WH-covariant) SIC-POVMs & Magic states

Connecting SICs & MUBs
D. M. Appleby,
“SIC-POVMs and MUBs: Geometrical relationships in prime dimensions”

e For p > 3, magic states coincide with second most famous MUB
construction — the Alltop MUB construction

o For flxed a '/E Z‘rn |<./'u.h.t' ./‘H.!J’.(">| — "“h,h'r"'t',f" + [l - f)‘],‘f,f ):«’I\/[_J

o Complete set p+1 MUBs = {|j).j € Z,} U{|fab.c). b.c € Ly}
(@ = 0 : Standard/lvanovic/Stabilizer, a # 0 : Alltop)

= Standard & Alltop MUBs are unitarily equivalent under M, , .,

Orbits: o Standard MUB is an orbit of Clifford group
o For fixed a # 0, Alltop MUB is an orbit of WH group
o [he complete set of (p+ | };12(;: — 1) magic states in dim p forms:
(i) A single orbit under Cliffords when p = 2 mod 3
(ii) Three distinct orbits under Cliffords when p = 1 mod 3
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(WH-covariant) SIC-POVMs & Magic states

Connecting SICs & MUBs
D. M. Appleby,

“SIC-POVMs and MUBs: Geometrical relationships in prime dimensions”

e For p > 3, magic states coincide with second most famous MUB
construction — the Alltop MUB construction

° For ﬂxed ( '/E Zp- |<./‘H.]i.f' fu.f:'.r"'>| = dh.h'r"’r,r’ -+ [l - ’)‘h,f;’ )‘.""I\/I_}

o Complete set p+1 MUBs = {|j).j € Z,} U{|fab.c). b.c € L}
(@ = 0 : Standard/lvanovic/Stabilizer, a # 0 : Alltop)

= Standard & Alltop MUBs are unitarily equivalent under M, , .,

Orbits: o Standard MUB is an orbit of Clifford group
o For fixed a # 0, Alltop MUB is an orbit of WH group
o [he complete set of (p+ | };12(;: — 1) magic states in dim p forms:
(i) A single orbit under Cliffords when p = 2 mod 3
(ii) Three distinct orbits under Cliffords when p = 1 mod 3

Upshot: Surprising inequivalence between magic states (cubic residues)
a€Zis={1.5.8.12} U{2.3.10.11} U {4.6.7.9}
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Balanced

Structure SIC PUVM/

(WH-covariant) SIC-POVMs & Magic states

p = 3: 9 points and 12 lines (Hesse configuration)

- Each point belongs to 4 lines
- Each line goes through 3 points
- This a (94, 123) configuration

Encodes relationships relevant to MUBs/SICs

- 12 Zauner subspaces whose complements

form 12 MUB vectors
- O points of intersection between subspaces

corresponding to 9 SIC vectors

p=3k+1: (p*—1)p* magic states and p*(p + l)/2 Zauner subspaces

- Every Zauner subspace contains 2(p — 1) magic states
- Every magic state belongs to p Zauner subspaces
- Thisa ((p* - I)pf,. p°(p + 1)/22(p—1)) configuration

Upshot: Understand a little more about the Zauner subspace
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Structure SIC POVM

CHSH Bell Inequality

(AoBo) + (AoB1) + (A1Bo) — (A1 B1)

+)
|00)+|11)
L \/§

L/

Balanced
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CHSH Bell Inequality
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CHSH Bell Inequality
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CHSH Bell Inequality
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Structure SIC POVM

CHSH Bell Inequality

Maximizing quantity (B) is
related to maximizing

Z pla,blx,y)

a+b=xzy mod 2
(a.bx,yeZs)

Pirsa: 14090006

Balanced

o (B)SM

max

settings

where p(a,b|z,y) is a conditional prob.

—_—

outcomes
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CHSH Bell Inequality
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CHSH Bell Inequality
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CHSH Bell Inequality
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CHSH Bell Inequality
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CHSH Bell Inequality for p = 3

LTy AN DN
Y W AR

n,r,yels
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CHSH Bell Inequality for p = 3

NIy AN DN
Y W Arpr

n,r,yels
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CHSH Bell Inequality for p = 3

(AM(Az), M(By) = {u°,w!,w?})

Az = "X Z°

B W._nr( y+2) X 72!/

Yy

M ~6.4Z6

Imax
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CHSH Bell Inequality for p = 3

_ S NTY AN RN
B= Y Ww'"YA'D]

n,r,yels

=t =t X 7=

B. = Ywt2) x 72y

Yy

o (BYM ~ 64«6

Imax

Maximizing quantity (B)ax
is related to maximizing settings

Z p(a,blz,y) where p(a,b|x,y) is a conditional prob.

a+b+zxy=0 mod 3 —_—
(a.b.x.yeZ3) outcomes
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CHSH Bell Inequality for p = 3

— , Yy An n
B= Y w“YA'B!

n,x,yeZs

B,
QM

@ o (B)ax

esult: Magic gates are optimal for all prime p (they maximize B)

(BYSM < 49 and probably saturates this as p — 0o

max

) — 1
Information causality says (B)SM < (l . ) with no restrictions

max -— I)
VP
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CHSH Bell Inequality for p = 3

— , Yy An n
B= Y w'YA'B!

n,x,yeZs

) )
& =0
oL

B,
QM

@ o (B)max

esult: Magic gates are optimal for all prime p (they maximize B)

(BYSM < 49 and probably saturates this as p — 0o

max

) — 1
Information causality says (B)SM < (l . ) with no restrictions

max — l)
VP
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Magic in CHSH games

The proof is actually enlightening!
First, one definition:

Def: The V-th vector in the B-th Weyl-Heisenberg basis is given by
(eigenvectors of {X. X Z...... X ZP~1} respectively)

. . [ o
Vil _ i
pXip| = ; E “‘- ! “'cll.m'

l 1

ol

J
- I TOTIRT
so that |!'}}) = — Z w(zBk" =) “‘/.'> (= =a™" mod P)
VP i
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Magic in CHSH games

The proof is actually enlightening!
First, one definition:

Def: The V-th vector in the B-th Weyl-Heisenberg basis is given by
(eigenvectors of {X. X Z...... X ZP~1} respectively)

. . [ o
Vi —di
pXtp| = ; E “‘~ ! “'c}l.m'

l

I

j
. l 1 2 ’
so that [¢)) = — Z w (2B =VE) L) (= =a~! mod p)
VP jeF,

and one result from number theory (Weil bound)

Weil: A polynomial f of degree 1 over a prime field Z,, satisfies
&

provided p does not divide n.
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Magic in CHSH games

) =,

. —~B(B+%)y\, ,—B(B+%), . :
o § = E Vg o *’| i.e. one vector from each basis
B

o The magic states {|f_1/12,~1/8.c). ¢ € Z,} form an eigenbasis for S

- —B(B+3%), , )
’\lu:lx (&) = Z <" 'B } I.I—1‘,”12.—1,.-"'H.r'>|
B

)

= pl(+|f=1/12.-1/8.¢)|"

—_ Izw,w.r' |2
< [(3=1)yp)* = 4p

(because “balanced”...)

@ Sato-Tate conjecture describes distrib
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Balancedness of Magic States

Recent work has motivated the search for “balanced” states
I.e., states that look the same in every basis

llya Amburg, Roshan Sharma, Daniel Sussman, William K. Wootters
“States that "look the same” with respect to every basis in a mutually unbiased set"

Such states

- are analagous to harmonic oscillator eigenstates (directionless)
- are automatically minimum uncertainty states (important for QKD)
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Balancedness of Magic States

Recent work has motivated the search for “balanced” states
I.e., states that look the same in every basis

llya Amburg, Roshan Sharma, Daniel Sussman, William K. Wootters
“States that "look the same” with respect to every basis in a mutually unbiased set"

Such states

- are analagous to harmonic oscillator eigenstates (directionless)
- are automatically minimum uncertainty states (important for QKD)

Notation: The MUB decomposition of an arbitrary operator A" in dim. 3 is
KA | (081K]08

|
z_'_ll)|]\: "‘.ll)> (r': l\:|r:.
D2\ K[02) | (V2| K|

| S ()
S S

(O[K10) | (gl K [vg) |
KN+ | (I l\:|l) (z',l’;\l\:|:-(llg) (
(2[K12) | (Wglh|vg) | €
0,00 | €0,0 | €0,1 | €0.2
Clso | €10 | C1,1 | €C1.,2 columns ~ prob. distributions

| W] %]
~

200 | €C2,0 | €2,1 | 2,2

“ -
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Balancedness of Magic States

Recent work has motivated the search for “balanced” states
I.e., states that look the same in every basis

llya Amburg, Roshan Sharma, Daniel Sussman, William K. Wootters
“States that "look the same” with respect to every basis in a mutually unbiased set”

Such states

- are analagous to harmonic oscillator eigenstates (directionless)
- are automatically minimum uncertainty states (important for QKD)

Notation: The MUB decomposition of an arbitrary operator A" in dim. 3 is

——

(OIKC10) | (gl K[vg) | (VTIK[Y) | (g K|
K | QK | (| K[ody | (K[ | (3K ],
2IK12) | (§IK[0F) | (VT IK[T) | (V31K

(0 0

o)

torobto =
~—

—
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Balancedness of Magic States

Recent work has motivated the search for “balanced” states
I.e., states that look the same in every basis

llya Amburg, Roshan Sharma, Daniel Sussman, William K. Wootters
“States that "look the same” with respect to every basis in a mutually unbiased set"

Such states

- are analagous to harmonic oscillator eigenstates (directionless)
- are automatically minimum uncertainty states (important for QKD)

Notation: The MUB decomposition of an arbitrary operator A" in dim. 3 is

(OJK|0) | (ol K[y | (VFIK[UT) | (W3] K|3)
Ko | QKL | WKL | (KD | @l K]el)
(2IK|2) | (V§IK[g) | (VI [0T) | (3| K[03)

0.333 ] 0.7124 | 0.7124 | 0.0859
fr1.0) < | 0.333]0.2017 | 0.2017 | 0.7124
0.333 | 0.0859 | 0.0859 | 0.2017
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Balancedness of Magic States

Result: All magic states |f,..) have flat distribution in computational
basis, and the same distribution in every other basis

Moreover, can prove exactly which permutation occurs in moving
from basis to basis (depends on the magic state)

€0,0 | €0,1 | €0,2
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Balancedness of Magic States

Result: All magic states |f,...) have flat distribution in computational
basis, and the same distribution in every other basis

Moreover, can prove exactly which permutation occurs in moving
from basis to basis (depends on the magic state)

0.0 | €0.1 0.2

Note: The max entry of a column is ~ the min-entropy. Minimizing the
average min-entropy across a number of bases involves trade-offs,
Are magic states optimal amongst flat-balanced states?
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Balancedness of Magic States

Result: All magic states |f,..) have flat distribution in computational
basis, and the same distribution in every other basis

Moreover, can prove exactly which permutation occurs in moving
from basis to basis (depends on the magic state)

L/3 | coo | co1| coo
L/31crolera |

1,
L/3 | o | coq | coc

Vg =

The max entry of a column is ~ the min-entropy. Minimizing the
average min-entropy across a number of bases involves trade-offs,
Are magic states optimal amongst flat-balanced states?

: The most informative eavesdropping basis for Eve in the BB'84
scheme is given by magic states, {|H).|H*)}.
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Open Questions

e How much of this structure carries over to power-of-(odd)-prime
dimension?

e Further applications in QRACs, Eavesdropping, entropic
uncertainty relations etc.?

e Higher order polynomials and/or higher levels of Clifford hierarchy

Refs:

Mark Howard and Jiri Vala,

“Qudit versions of the qubit 7 /8 gate”

Ingemar Bengtsson, Kate Blanchfield, Earl Campbell, Mark Howard,
“Order 3 Symmetry in the Clifford Hierarchy"

M. Howard et al.,

In preparation
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