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Abstract: <span>We isolate an important physical distinction between gauge symmetries which exist at the level of histories and states, and those
which exist at the level of histories and not states. This distinction is characterised explicitly using a generalized Hamilton-Jacobi formalism within
which a non-standard prescription for the observables of classical totally constrained systems is developed. These ideas motivate a “relational
quantization' procedure which is different from the standard "Dirac quanization'. In particular, relational quantization of totally constrained systems
leads to a formalism with superpositions of energy eigenstates and an enlarged set of quantum observables. These "Kuchav{r} observables can
change independently of each other, and thus are associated with measurable quantities in excess of the “perennials of the standard Dirac
approach.</span>
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Key Results

I. New framework for identifying and constructing observables and their
evolution in totally constrained theories
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Key Results

. New framework for identifying and constructing observables and their

evolution in totally constrained theories

. Generalized Hamilton—-Jacobi formalism containing ‘Dirac observables' as a

special case

. Insight into partial and complete observables framework and (limited)

support for Rovelli's (2002, 2007) interpretation of the partial observables
as measurable.

. Schrédinger type formalism for quantum reparametrization invariant

theories; featuring a dynamical wavefunctions, superpositions of energy
eigenstates, and extra observables.

. Alternative derivation of the dynamical minisuperspace model of Wald and

Unurh (1989)
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Motivation

On our view, one must distinguish between two notions of gauge invariance
often taken as equivalent in the literature:
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Motivation

On our view, one must distinguish between two notions of gauge invariance
often taken as equivalent in the literature:

— The first notion arises when there exists an equivalence class of states in
the state space of a theory that are identified as physically
indistinguishable, leading to an under-determination problem in the
evolution equations of the theory.

A second notion of gauge invariance arises when there is an equivalence
class of histories in the space of allowable histories of a theory. A
symmetry at the level of histories is defined directly in terms of an
invariance of the action.
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Motivation

— Although such an identification is justified in the case of a Type 1
symmetry, it is certainly not justified in the Type 2 case.

— Thus, in our view, the Dirac quantization algorithm is only justified for the
Type 1 case.

— One then requires a new definition of observables and a new approach to
quantization for gauge theories with Type 2 symmetries. This is precisely
what the relational quantization approach presented here aims to provide
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Plan of Talk

1 Generalized Hamilton-Jacobi Formalism

2 Relational Quantization

g Gravity
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— Consider the canonical action of a totally constrained Hamiltonian theory
on a phase space [":

5= [ [p-a-2Cala.p)]ar. (1)
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— Consider the canonical action of a totally constrained Hamiltonian theory
on a phase space [:

5= [ [p-a-2Cala.p)]ar. (1)

— Qur goal is to find a canonical transformation that parametrizes the flow
of the (Abelianized) constraints Cy locally on I and restrict this flow to
the constraint surface defined by C, ~ 0.

— Consider the modified action:
Sa= / (p-q+0% - Ea — A% (Ea — Calq,p))] dt

defined on the extended phase space '(q,p) — e(q, p; ¢, Ea)
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— We convert S to a type-2 generating functional F(q, P;$“,®a) by adding
the boundary term QA P. The canonical transformation we are looking for
can then be shown to satisfy the generalized Hamilton—Jacobi relations

oF oF
967 = € (9.5) )
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— We convert S to a type-2 generating functional F(q, P;$“,®«) by adding
the boundary term QA P. The canonical transformation we are looking for
can then be shown to satisfy the generalized Hamilton—Jacobi relations

oF
pga = Co (0. 55) (4)
— Using a separation Ansatz for F

F(qsp;¢a):F(q?P;¢aygﬁ): W(q$P)+SH¢aa

where we have identified the separations constants as the canonical
coordinates £“.

— We then obtain

F(a,P,6%) = W(a,P)+°Ca (0, %) (6)

which gives the generator of the canonical transformation we are looking
for parametrized, as advertised, by ¢“.
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— We aim to define a canonical transformation that parametrizes the flow of
the constraints. This can be achieved by requiring that the new
coordinates (P, Q; ®“, En) have zero flow under the transformed Ca, so
that they are analogous to the ‘initial data’ of standard Hamilton—Jacobi
theory. [
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— We convert S to a type-2 generating functional F(q, P;$“,®a) by adding
the boundary term QA P. The canonical transformation we are looking for
can then be shown to satisfy the generalized Hamilton—Jacobi relations

967 = € (. 56) )
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— The Hamilton—Jacobi equation of motion are then

oF

Q= oP c,,( %):Eu )

9 Bq

which should be read as an equation for g in terms of the ‘initial data’
(Q, P), the constants of motion, €4, and the parameters ¢“. The

interpretation of this equation depends crucially upon the type of
symmetry at hand
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— The Hamilton—Jacobi equation of motion are then

oF

Q = ap AW (7)
oP C. (q,(—(r)?)zgu

which should be read as an equation for g in terms of the ‘initial data’
(Q, P), the constants of motion, €4, and the parameters ¢“. The
interpretation of this equation depends crucially upon the type of
symmetry at hand

~ For Type 1 symmetries the ¢“ parameterize unphysical flow. To compute
observables we must impose £, = 0 upon (7) and then eliminate the
¢“-dependance in the resulting expression. This can be done either by
gauge fixing or constructing a family of complete observables. Gauge
fixing is more natural.
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— We can illustrate these points explicitly using a finite dimensional model
with total Hamiltonian:

H(§i,Bi) = NH(Gi, Bi) + X - P(Bi), (8)

— Evolution of the particle positions, g;, and momenta, p;, is genv[erated by
the Hamiltonian constraint

(9)

which is associated with a Type 2 reparamterization symmetry

— The ‘Gauss-like’ constraint,

73:25:‘%0,

is associated with a Type 1 spatial translational symmetry.
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=2
HE8) =S P —Ex0 9
(qnpt)_ 2m ~ U, ()
. ]
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— We define the extended theory via the action:

Se=/dt lz*q-

i

where the extended variables (7,5) are arbitrary labels parametrizing the
time and centre of mass of the system respectively.

— The energy, £, can be thought of as a redefinition of the zero of the total

energy of the system E — E 4+ £. The other conjugate momentum
variable, T, is the total linear moment of the system

I
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— We define the extended theory via the action:

o= [ a [Z ]
i
where the extended variables (7,5) are arbitrary labels parametrizing the

time and centre of mass of the system respectively.

— The energy, £, can be thought of as a redefinition of the zero of the total
energy of the system E — E 4+ £. The other conjugate momentum

variable, T, is the total linear moment of the system

— The generating functional takes the form:

F(q;,P;;cr,'r): E q_."P,'—(E Er_;—f—E)T-FU- E f"’,'. (12)
, : i "
[ ! I
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~ The Hamilton—-Jacobi equation of motion, (7), for this system the gives us:

(13)

where the f’,-'s must obey the constraints. This is just the usual integral of
motion for the free particle plus an extra term which shifts the origin of
each particle system by &,

This model makes clear the importance of the Type 1 vs. Type 2
distinction: The & parameterize unphysical changes, and the relevant
conserved quantities (total linear momentum) are constrained to be zero.
On the other hand, 7 parameterizes dynamical physical change, and the
relevant conserved quantity (energy) can be non-zero.
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— The Type 1 interpretation of the symmetry associated with o implies a
natural reduction in the original phase space degrees of freedom equivalent
to a centre of mass gauge fixing:

§=Q™M g, (14)

— Reinserting this back into the integral of motion (13):

—

P

di— ™M) = (G- 6+ P, (15)

P.
= + ‘f;,,'-T, (16)
which are easily verified to fulfil the usual Dirac observables condition w.r.t
the P = 0 constraint
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— If we apply the same gauge fixing method to the Type 2 symmetries the
‘integral of motion’ would reduce to the trivial statement

Gi" = Q. (17)

The only way to obtain a notion of evolution for this system is to consider
(16) as a genuine evolution equation for the system.
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the Hamiltonian constraint 7.
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— One might, however, wish to give a ‘parameter free' expression for the
relative variation of the observables. Consider our formalism in
1-dimension. We can choose the partial observables to be the centre of
mass coordinates, QF™, meaning the gi™ defined via (16), play the role of
the ‘flow equations’.
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— For any gqi™" = k € R this expression defines a ‘complete observable’, which
will also be a Dirac observable. One can use the complete and partial
observables program to deparametrize the evolution purely in terms of
observable quantities.
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— For any gqi™" = k € R this expression defines a ‘complete observable’, which
will also be a Dirac observable. One can use the complete and partial
observables program to deparametrize the evolution purely in terms of
observable quantities.

This evolution is, however, fundamentally controlled by (16) and is always
well-defined, even when a particular deparametrization breaks down. Thus,
even if one wishes to use parameter-free ‘complete observable’ expressions,

one is still required to retain the full the ‘partial observables’
representation given by (16).

For the Type 2 Symmetries (although not for Type 1 symmetries) this
supports Rovelli's (2002, 2007) idea that partial observables should be
taken to correspond to measurable quantities.
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Summary

— A Type 1 symmetry exists within a theory when there is a state symmetry
with a corresponding history symmetry. The Type 1 labelling parameters
and conserved charges do not have physical significance: the
Hamilton—Jacobi characteristic functional should be independent of the
parameters, and the conserved charges should be set to zero

A Type 2 symmetry exists when there is history symmetry with no
corresponding state symmetry. The labelling parameters and conserved
charges do have physical significance: change of the Hamilton—Jacobi
characteristic functional with respect to the parameters is dynamical, and
the conserved charges are constants of motion

Kuchaf Observables, which commute with Type 1 constraints but not
Type 2 constraints, parameterize the independently measurable degrees of
freedom. This view supports the construction of complete observables for
Type 2 constraints, so long as we take the Rovelli-type interpretation of
the partial observables.
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The requirements for a quantization technique that faithfully preserves the
physical characteristics of a classical theory with Type 1 symmetries (labelled
B) and Type 2 symmetries (labelled u) are:

t The classical Kuchaf observables should be the basis for the algebra of
quantum observables, which are defined as Hermitian operators on a
physical Hilbert space.

We should define quantum wavefunctions as the elements of this physical
Hilbert space that are invariant under change with respect to the Type 1

independent parameters, ¢g.

The wavefunctions should evolve according to an evolution equation that
reduces in the semi-classical limit to the generazlied Hamilton—Jacobi
evolution equation for the Type 2 parameters, ¢,
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— For Type 1 symmetries (20) is implemented as a kinematical restrictions
on the theory: physical states of the quantum theory, W, should be
cﬁﬁ-independent.

— The physical Hilbert space should then be constructed in such a way that
the inner product is invariant under the action of the relevant Cg's. This
coincides with the usual Dirac analysis and can be achieved by standard
methods (e.g. group averaging)
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— For Type 1 symmetries (20) is implemented as a kinematical restrictions
on the theory: physical states of the quantum theory, Wy, s, should be

cbﬁ-independent.

The physical Hilbert space should then be constructed in such a way that
the inner product is invariant under the action of the relevant Cg's. This
coincides with the usual Dirac analysis and can be achieved by standard
methods (e.g. group averaging)

For Type 2 symmetries (20) is implemented as dynamical equations: they
do not lead to any further kinematical restrictions upon the physical
states, rather they give the change of such states with respect to the
relevant (physical) ¢*s.

Observables are self-adjoint operators on the physical Hilbert space: they
must commute with the Type 1 constraints, but not the Type 2
constraints. They are thus quantum Kuchar observables, with a generzlied
Heisenberg evolution equation:

d A A

Pirsa: 14090004 Page 42/49



The above considerations make clear the main difference between relationally
quantized theories and Dirac quantized theories:

— In relational quantization, there is a larger set of observables because the
relevant operators are not required to commute with the Type 2
constraints. These observables evolve according to the Heisenberg
equations (21).

This implies that we have a different quantum state than that obtained
through Dirac quantization. Specifically, in relational quantization the

state is allowed to be in a general superposition of eigenstates of the
evolution operators CH
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— Qur ‘relational quantization’ approach is based upon the assumption that,
when they exist, state symmetries can be unambiguously identified at the
level of phase space, this is the case for the spatial diffeomorphism
symmetries associated with the momentum constraints

—~ However, it is explicitly not the case for general relativity: refoliation
symmetry, connected to the Hamiltonian constraints H, is not represented
in terms of sequences of physically indistinguishable states in phase space.

Pirsa: 14090004 Page 44/49



— This might seem like a dire problem for relational quantization: however,
on our view, the problem with refoliations is actually a barrier to any
consistent canonical quantization approach.

— An ability to identify indistinguishable classical states is a requirement for
a physically well motivated canonical quantization scheme based upon the
notion of quantum state

— Without being able to identify which classical instantaneous states are

physically equivalent, the problem of constructing a Hilbert space of
distinct quantum states is not even well posed.
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Quantization Requirements

This suggests the following quantization requirements for a reformulation of
general relativity:

1 The (unconstrained) phase space is constructed from the ADM data,
(gab,vrab), on a spatial hypersurface

2 Instantaneous physical states are invariant under spatial diffeomorphisms
i.e. the momentum constraint is preserved as a Type 1 symmetry
generating constraint

g All other constraints are required to be first class with respect to this

constraint, and be unambiguously categorizable as either Type 1 or Type 2
generating

4 The physical degrees of freedom should match the original theory (i.e. two
per spatial point) and be dynamical (i.e. propagated by a Hamiltonian
function)
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The m = 0 condition singles out
precisely the shape dynamics
gauge fixing

Our quantization requirements
thus point towards shape dynamics

formalism as a classical starting
point for quantum gravity

Shape Dynamics
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