Title: Boltzmann's Dog and Darwin's Finch: The statistical thermodynamics of self-replication and evolution

Date: Sep 17, 2014 02:00 PM

URL: http://pirsa.org/14090003

Abstract: Living things operate according to well-known physical laws, yet it is challenging to discern specific, non-trivial consequences of these constraints for how an organism that is a product of evolution must behave. Part of the difficulty here is that life lives very far from thermal equilibrium, where many of our traditional theoretical tools fail us. However, recent developments in nonequilibrium statistical mechanics may help light a way forward. The goal of this talk will be to explain some of these developments, and show how they begin to offer a new perspective on the physics of self-replication, natural selection, and evolution.

Pirsa: 14090003 Page 1/72

Boltzmann's Dog and Darwin's Finch

Jeremy England

Department of Physics Massachusetts Institute of Technology

Wednesday, September 17, 2014
Perimeter Institute

Pirsa: 14090003 Page 3/72

The meaning of life

In biology we focus on

Behavior Function Survival Reproduction Heredity

We start by fiat: "That's life."

Pirsa: 14090003 Page 4/72

The meaning of physics

In physics we focus on

Distance (location)
Time
Number of particles
Energy
Temperature

A priori, life is absent from the physical description

Pirsa: 14090003 Page 5/72

The art of translation

The art of translation

 mv^2 ?

The art of translation

Pirsa: 14090003 Page 10/72

What is special about life?...(physically)

- 1 Self-replication
- 2 Sensing, computation, and anticipation
- **3** Effective absorption of work from environment

We tend to understand 3 and 2 in terms of 1

Pirsa: 14090003 Page 11/72

Fit Finch

"Fitness" is easiest to define when we are comparing replicators that are very similar

Darwin says the more rapid proliferator 'wins'

Pirsa: 14090003 Page 12/72

Fit Finch?

What really makes evolution interesting is **adaptation**

Pirsa: 14090003 Page 13/72

Questions

Is there a general language for defining and understanding adaptation in physical terms?

Do we always need Darwinian selection to get adaptation?

Can we explain the emergence of life-like organization using fundamental physics?

Pirsa: 14090003 Page 14/72

Questions

Is there a general language for defining and understanding adaptation in physical terms?

Yes!

Do we always need Darwinian selection to get adaptation?

No!

Can we explain the emergence of life-like organization using fundamental physics?

Maybe?

Pirsa: 14090003 Page 15/72

Hints

All living things are made of matter

All living things need to eat

All living things give off heat

All living things cannot grow backwards

Pirsa: 14090003 Page 16/72

Life and the arrow of time

Why is it so much more likely to see a plant grow than ungrow?

Pirsa: 14090003 Page 17/72

Life and the arrow of time

Why is it so much more likely to see a plant grow than ungrow?

Pirsa: 14090003 Page 18/72

Hamiltonian dynamics

Hamiltonian dynamics

Pirsa: 14090003 Page 20/72

Coarse-graining phase space

Pirsa: 14090003 Page 21/72

Coarse-graining phase space

Pirsa: 14090003 Page 22/72

Boltzmann's Dog

Boltzmann's Dog

If living things are not at equilibrium then what can stat. mech. tell us?

Pirsa: 14090003 Page 24/72

Reservoir dogs

Pirsa: 14090003 Page 25/72

Newton's Laws and Symmetry

Pirsa: 14090003 Page 26/72

Newton's Laws and Symmetry

Newton's Laws and Symmetry

What goes up can come down

Detailed Balance

Time-reversal symmetry guarantees that detailed balance holds at thermal and chemical equilibrium

$$k_{A \to B}[A]_{eq} = k_{B \to A}[B]_{eq}$$
 $\frac{k_{A \to B}}{k_{B \to A}} = \frac{[B]_{eq}}{[A]_{eq}} \equiv K_{eq}^{BA}$
 $k_{C \to B}[C]_{eq} = k_{B \to C}[B]_{eq}$ $\frac{k_{C \to B}}{k_{B \to C}} = \frac{[B]_{eq}}{[C]_{eq}} \equiv K_{eq}^{BC}$
 $k_{C \to A}[C]_{eq} = k_{A \to C}[A]_{eq}$ $\frac{k_{C \to A}}{k_{A \to C}} = \frac{[A]_{eq}}{[C]_{eq}} \equiv K_{eq}^{AC}$

Detailed Balance-Breaking

Net reaction cycles are forbidden at equilibrium!

$$k_{A\to B}[A]_{eq} \neq k_{B\to A}[B]_{eq}$$

Pirsa: 14090003 Page 31/72

Detailed Balance-Breaking

Net reaction cycles are forbidden at equilibrium!

$$k_{A\to B}[A]_{eq} \neq k_{B\to A}[B]_{eq}$$

Pirsa: 14090003 Page 32/72

Back and Forth

$$\frac{\pi(j \to i)}{\pi(i \to j)} = \exp[-\beta(E_i - E_j)] = \exp[-\beta\Delta Q_{ij}]$$

Irreversibility and Entropy

$$\frac{\pi(j \to i)}{\pi(i \to j)} = \langle \exp[-\beta \Delta Q_{ij}] \rangle_{i \to j}$$

Crooks, 1999

Pirsa: 14090003 Page 34/72

Macrostate Construction

Pirsa: 14090003 Page 35/72

Macrostate Construction

Pirsa: 14090003 Page 36/72

Macrostate Construction

"Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt."

Wittgenstein, 1922

Pirsa: 14090003 Page 37/72

Irreversibility, Entropy, and Macrostates

$$\frac{\pi(\mathbf{II} \to \mathbf{I})}{\pi(\mathbf{I} \to \mathbf{II})} = \left\langle e^{\ln\left[\frac{p(j|\mathbf{II})}{p(i|\mathbf{I})}\right]} \langle e^{-\beta\Delta Q_{i\to j}} \rangle_{i\to j} \right\rangle_{\mathbf{I}\to \mathbf{II}}^{\text{England, 2013}}$$

Pirsa: 14090003 Page 38/72

Jensen and the Second Law

$$e^x \ge x + 1$$

$$\langle e^x \rangle \ge \langle x \rangle + 1$$

$$\frac{\pi(\mathbf{II} \to \mathbf{I})}{\pi(\mathbf{I} \to \mathbf{II})} = \left\langle e^{-\Delta S_{total}} \right\rangle_{\mathbf{I} \to \mathbf{II}}$$

$$\Delta S_{total} \ge \ln \left[\frac{\pi(\mathbf{I} \to \mathbf{II})}{\pi(\mathbf{II} \to \mathbf{I})} \right]$$

Pirsa: 14090003

Jensen and the Second Law

$$\Delta S_{tot} = \beta \langle \Delta Q \rangle + \Delta S_{int} \ge \ln \left[\frac{\pi (\mathbf{I} \to \mathbf{II})}{\pi (\mathbf{II} \to \mathbf{I})} \right] \ge 0$$

Entropy production tracks with irreversibility at a macroscopic level, even when driven far from equlibrium!

This is true for arbitrary coarse-grainings, including bit erasure/computing (Laundauer)
Markov processes (Blythe)
chemical reactions (Prigogine & DeDonder) . . .

. . . and for self-replication

Pirsa: 14090003 Page 40/72

Growth and dissipation

Growth is accompanied by internal entropy change and dissipation

Pirsa: 14090003 Page 41/72

Growth and dissipation

- g exponential growth rate
- δ spontaneous reversal rate
- s system entropy change
- ψ dissipation in reservoir

Doubling time will be roughly proportional to $1/(g-\delta)$

 $\psi \ge \ln[g/\delta] - s$ is generally going to be positive

So, winning Darwin's game happens to be about dissipating more than your competitor

Pirsa: 14090003 Page 42/72

Driven Stochastic Evolution

Pirsa: 14090003 Page 43/72

Driven Stochastic Evolution

$$\ln \left[\frac{\pi(\mathbf{A} \to \mathbf{B})}{\pi(\mathbf{A} \to \mathbf{C})} \right] \simeq \Delta \ln \Omega_{\mathbf{B}\mathbf{C}} + \ln \left[\frac{\pi(\mathbf{B} \to \mathbf{A})}{\pi(\mathbf{C} \to \mathbf{A})} \right] - \ln \left[\frac{\langle \exp[-\Delta S_{res}] \rangle_{\mathbf{A} \to \mathbf{B}}}{\langle \exp[-\Delta S_{res}] \rangle_{\mathbf{A} \to \mathbf{C}}} \right]$$

durability

fluctuation and dissipation

Coming to terms

compare phase space volumes of the two macrostates

$$\Delta \ln \Omega_{\mathbf{BC}} \simeq -\sum_{k} p(j|\mathbf{B}) \ln p(j|\mathbf{B}) + \sum_{k} p(k|\mathbf{C}) \ln p(k|\mathbf{C})$$

Systems coupled to reservoirs tend to get more disordered because of fluctuations

Coming to terms

$$-\ln\langle\exp[-\Delta S]\rangle = \langle\Delta S\rangle - \frac{\sigma_{\Delta S}^2}{2} + \dots$$
$$-\ln\langle\exp[-\Delta S]\rangle \equiv \Psi - \Phi$$

Cumulant generating function breaks into two pieces: the **mean dissipation**, and the **fluctuations** about the mean

(Warning: Fluctuations can dominate!)

To make this quantity very positive, you need **reliably** high dissipation

Pirsa: 14090003 Page 46/72

Where does the relationship between dissipation in the reservoir and likelihood come from?

Transition rates are controlled by activation barrier heights

$$k_{i\to j} = k_0 e^{-\Delta E/k_B T}$$

Pirsa: 14090003 Page 47/72

The effect of a time-varying external drive is to oscillate the energies of different microstates

Concerted drift is produced by events that tend to absorb work from the external drive

Pirsa: 14090003 Page 48/72

We start out at the beginning of a drive cycle in the state on the right

We assume the barrier is high enough that we are unlikely to cross from thermal fluctuations alone

Pirsa: 14090003 Page 49/72

Then the drive lifts us up in energy by doing work

The likelihood of hopping over to the transition state from thermal fluctuation becomes much higher

Pirsa: 14090003 Page 50/72

Then the drive lifts us up in energy by doing work

The likelihood of hopping over to the transition state from thermal fluctuation becomes much higher

Pirsa: 14090003 Page 51/72

Comparing states of fixed return probability is essential

On such a surface of states, dissipation and drift are coupled

Pirsa: 14090003 Page 52/72

Oscillation and Resonance

$$\omega_0 = \sqrt{k/m}$$

The same mechanical system moves more when it is driven at the right frequency

Pirsa: 14090003 Page 53/72

Oscillation and Resonance

The same mechanical system moves more when it is driven at the right frequency

Driven Stochastic Evolution

Pirsa: 14090003 Page 55/72

Lessons from Skiing

What happens when you wander through a mountain range covered by a random assortment of ski lifts?

Where do you eventually end up after a long time?

Pirsa: 14090003 Page 56/72

Lessons from Skiing

For a given external drive, some arrangements of matter will resonate more and absorb more energy

This is like a region where there are more ski lifts

Sometimes we ride up one side of the mountain and ski down the other

The more this happens, the more we get trapped in shapes that form by being specially adapted to the drive

Pirsa: 14090003 Page 57/72

Not your typical macrostate

Living things are good at getting applied fields to do work on them so they can dissipate the energy

Pirsa: 14090003 Page 58/72

Resonant Adaptation

Ito et al., Scientific Reports, 2013

Silver nanorods selfassemble into structures that match surface plasmon resonance to wavelength of driving light field

No need to talk about anything in the system making a copy of itself . . .

Pirsa: 14090003 Page 59/72

Spontaneous Rewiring

Pirsa: 14090003 Page 60/72

Adaptation without Selection

Pirsa: 14090003 Page 61/72

Adaptation without Selection

As time passes network resonates more with drive

Springs rearrange to absorb more work from single driven particle

Pirsa: 14090003 Page 62/72

Adaptation without Selection

As time passes network resonates more with drive

Springs rearrange to absorb more work from single driven particle

Pirsa: 14090003 Page 63/72

Pirsa: 14090003 Page 67/72

Pirsa: 14090003

Pirsa: 14090003 Page 69/72

Summary

Time-reversibility of Newton's Laws guarantees relationship between irreversibility and entropy production

Structures that form through reliable entropy production in a time-varying environment should seem adapted to 'eating'

We are able to demonstrate this 'learned' resonance by simulating a simple toy chemistry in an oscillating drive

Pirsa: 14090003 Page 70/72

Future Directions

Explaining some aspects of biological organization without Darwinian selection

Demonstrating more complex adaptation phenomena in driven 'inanimate' systems

Looking for signatures of sensing, prediction, and computation . . .

Pirsa: 14090003 Page 71/72

Thanks to . . .

Thomas and Virginia Cabot

Jeremy Owen Cambridge U.

Tal Kachman Technion

Robert Marsland MIT

Pirsa: 14090003 Page 72/72