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Abstract: <span>Living things operate according to well-known physical laws, yet it is chalenging to discern specific, non-trivial consequences of
these constraints for how an organism that is a product of evolution must behave. Part of the difficulty hereis that life lives very far from thermal
equilibrium, where many of our traditional theoretical tools fail us. However, recent developments in nonequilibrium statistical mechanics may help
light away forward. The goa of thistalk will be to explain some of these developments, and show how they begin to offer a new perspective on the
physics of self-replication, natural selection, and evolution.</span>
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The meaning of life

In biology we focus on

Behavior
Function
Survival
Reproduction
Heredity

We start by fiat: “That’s life.”
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The meaning of physics

In physics we focus on

Distance (location)
Time
Number of particles
Energy
Temperature

A priori, life is absent from
the physical description
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The art of translation
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The art of translation
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The art of translation
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What is special about life?..nysicay)

1 Self-replication
2 Sensing, computation, and anticipation

3 Effective absorption of work from environment

We tend to understand 3 and 2 in terms of 1
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Fit Finch

“Fitness” is easiest to
define when we are
comparing replicators that
are very similar

Darwin says the more rapid proliferator ‘wins’
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Fit Finch?

What really makes evolution
interesting is adaptation
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Questions

Is there a general language for defining and
understanding adaptation in physical terms?

Do we always need Darwinian selection to get
adaptation?

Can we explain the emergence of life-like
organization using fundamental physics?
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Questions

Is there a general language for defining and :
understanding adaptation in physical terms? Yes!

Do we always need Darwinian selection to get
adaptation? No!
Can we explain the emergence of life-like

organization using fundamental physics?
Maybe?
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Hints

All living things are made of matter
All living things need to eat
All living things give off heat

All living things cannot grow backwards
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Life and the arrow of time

Why is it so much more likely to see
a plant grow than ungrow?
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Life and the arrow of time

Why is it so much more likely to see
a plant grow than ungrow?
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Hamiltonian dynamics

We explore a
constant
energy surface
in phase space
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Coarse-graining phase space

Our observable
divides phase space
into different sub-
volumes
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Coarse-graining phase space

R({pi}.{qi})

Our observable
divides phase space
into different sub-
volumes
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Boltzmann’s Dog
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Boltzmann’s Dog

—

( \, The statistical
still dead equilibrium in a

closed system is
not going to be
remotely alive

If living things are not at equilibrium
then what can stat. mech. tell us?
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Reservoir dogs

p

“reservoir”

$
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“drive”
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Newton’s Laws and Symmetry
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Newton’s Laws and Symmetry
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Newton’s Laws and Symmetry
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Newton’s Laws and Symmetry
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What goes up can come down
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Detailed Balance

Time-reversal symmetry guarantees that detailed
balance holds at thermal and chemical equilibrium
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Detailed Balance-Breaking

Net reaction cycles are forbidden at equilibrium!

B B

C C
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Detailed Balance-Breaking

Net reaction cycles are forbidden at equilibrium!
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Back and Forth

Pirsa: 14090003 Page 33/72



Irreversibility and Entropy

drive
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Macrostate Construction

drive
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Macrostate Construction

drive
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Macrostate Construction

drive

“Die Grenzen meiner Sprzlchc
bedeuten die Grenzen meiner Welt.”

Wittgenstein, 1922
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Irreversibility, Entropy, and Macrostates

drive
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Jensen and the Second Law
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Jensen and the Second Law

A.S{(,f — ;3<A(2> -+ AS',‘”{ 2 111 [
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> ()
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Entropy production tracks with irreversibility at a
macroscopic level, even when driven far from equlibrium!

This is true for arbitrary coarse-grainings, including
bit erasure/computing (Laundauer)
Markov processes (Blythe)
chemical reactions (Prigogine & DeDonder) . ..

... and for self-replication
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Growth and dissipation

Growth is accompanied by internal
entropy change and dissipation
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Growth and dissipation

g exponential growth rate

) spontaneous reversal rate
S  system entropy change

) dissipation in reservoir
Doubling time will be roughly proportionalto 1/(g — ¢)

) > 1n[g/d] — s is generally going to be positive

So, winning Darwin’s game
happens to be about dissipating
more than your competitor
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Driven Stochastic Evolution

as

W )

%\\)(\ _

A

irsa: 14090003 Page 43/72



Driven Stochastic Evolution
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Coming to terms

Compare phase /C ZZC
space volumes

of the two B
macrostates p(k|C)

AlnQpc ~ —» p(j|B)Inp(jB) + > p(k|C)Inp(k|C)
k k

Systems coupled to reservoirs
tend to get more disordered
because of fluctuations
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Coming to terms

— In{exp[—AS]) = (AS) — U:—;‘S +...

e

— In{exp[-AS]) =V - ®

Cumulant generating function breaks into two pieces:
the mean dissipation, and the fluctuations about the mean

(Warning: Fluctuations can dominate!)

To make this quantity very positive,
you need reliably high dissipation
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Intuition from Arrhenius

Where does the relationship between dissipation in
the reservoir and likelihood come from?

=

AlE \ j

Transition rates are controlled by activation barrier heights
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Intuition from Arrhenius

The effect of a time-varying external drive is to
oscillate the energies of different microstates

AFE

1

Concerted drift is produced by events that tend to
absorb work from the external drive
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Intuition from Arrhenius

We start out at the beginning of a drive cycle in the
state on the right

We assume the barrier is high enough that we are
unlikely to cross from thermal fluctuations alone
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Intuition from Arrhenius

Then the drive lifts us up in energy by doing work

The likelihood of hopping over to the transition state
from thermal fluctuation becomes much higher
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Intuition from Arrhenius

Then the drive lifts us up in energy by doing work

5 i oo

The likelihood of hopping over to the transition state
from thermal fluctuation becomes much higher
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Intuition from Arrhenius

Comparing states of fixed return probability is essential

AFE

1

On such a surface of states, dissipation and drift are coupled
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Oscillation and Resonance

wo = Vk/m

The same mechanical system
moves more when it is driven
at the right frequency
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Oscillation and Resonance

sin wt

wo = Vk/m

The same mechanical system
moves more when it is driven
at the right frequency
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Driven Stochastic Evolution
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Lessons from Skiing

What happens when you
wander through a
mountain range covered
by a random assortment
of ski lifts?

Where do you eventually
end up after a long time?

Page 56/72



Pirsa: 14090003

Lessons from Skiing

For a given external drive, some arrangements of
matter will resonate more and absorb more energy

This is like a region where there are more ski lifts

Sometimes we ride up one side of the mountain
and ski down the other

The more this happens, the more we get trapped in
shapes that form by being specially adapted to the drive
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Not your typical macrostate

Living things are good at getting
applied fields to do work on them
so they can dissipate the energy
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Resonant Adaptation

Silver nanorods self-
assemble into structures
that match surface
plasmon resonance to

wavelength of driving
light field

Ito et al., Scientific Reports, 2013

No need to talk about anything in the
system making a copy of itself . . .
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Spontaneous Rewiring
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Adaptation without Selection
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Adaptation without Selection

As time passes
network resonates
more with drive

Springs rearrange
to absorb more

work from single
driven particle

Spectrum at iteration 0 dashed line is drive w ;= 2.0
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Adaptation without Selection

Spectrum at iteration 2400 dashed line is drive w,= 2.0
I | drive BN No drive

As time passes "

T0.6

network resonates c:;
more with drive

0.4
0.2 I
0.0
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w
Force component projected to the narmal mode frame of reference
at iteration 2400 dashed line is driving frequency w, =20

Springs rearrange =
to absorb more

work from single
driven particle
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Spectrum at iteration 58 w,; - 1.0 N=15
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Spectrum at iteration 127 w,; — 1.0 N=15
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Spectrum at iteration 33 w,; — 1.0 N=15
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Entropy Production
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Entropy Production
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Entropy Production
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Summary

Time-reversibility of Newton’s Laws guarantees relationship
between irreversibility and entropy production

Structures that form through reliable entropy production in
a time-varying environment should seem adapted to ‘eating’

We are able to demonstrate this ‘learned’ resonance by
simulating a simple toy chemistry in an oscillating drive
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Future Directions

Explaining some aspects of biological
organization without Darwinian selection

Demonstrating more complex adaptation
phenomena in driven ‘inanimate’ systems

Looking for signatures of sensing,
prediction, and computation . ..
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