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Abstract: <span> Recently a new and rather unexpected connection between condensed matter physics and algebraic topology has been noted.
Namely, it appears that phases of matter with an energy gap, no long-range entanglement, and fixed symmetry can be classified using cobordism
theory. | will exhibit several examples of this connection and describe a possible explanation.</span>
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Topological phases of matter
Free fermionic SRE phases

Thermal Hall response
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Bosonic SRE phases and cobordisms
Fermionic SRE phases and cobordisms

Heuristic explanation

Based on arXiv:1403.1467 and 1406.7329.
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Gapped phases of matter

In grade school we learn about the following phases: solid, liquid, gas.

Actually, liquid ~ gas, and there are many crystalline solids distinguished
by their symmetries.

At low temperatures, the basic feature is the presence/absence of a gap
between the ground state and the 1st excited state.

If the gap is nonzero even for an infinite system, the phase is called
gapped.

Examples of gapless phases: crystals, superfluid *He, Fermi liquid.

Examples of gapped phases: broken discrete symmetry, Quantum Hall
phases, confining and Higgs phases of gauge theories.
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Topological Phases of Matter

Old viewpoint: gapped phases of matter are “boring” because they all
look the same at long distances/time-scales.

Modern viewpoint: there is a variety of topological phases of matter which
are gapped.

To distinguish them one can either consider a nontrivial spatial topology or
to look at the edge physics.

Example: Fractional Quantum Hall states. (Ground-state degeneracy on a

space of nontrivial topology, gapless edge modes). IR physics is described
by a nontrivial 3d TQFT.
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Short-Range Entangled Phases

SRE phases are gapped phases such that the vacuum state does not have
long-range entanglement.

There is a unique vacuum for any spatial topology, so the TQFT is almost
trivial ("invertible").

Nevertheless, there are distinct SRE phases. One would like to classify
such phases up to homotopy.

More generally, can study homotopy classes of SRE phases with a fixed
symmetry group G.
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Free Fermionic SRE phases

SRE phases of free fermions have been classified (Schnyder et al 2008,
Kitaev 2009) under a somewhat stronger equivalence relation: two SRE
phases are equivalent if they can be deformed into another after perhaps
adding some “trivial” electronic states.

The resulting classification is related to K-theory and Clifford algebras.

Case 1: no symmetry except (—1)F.
g 1 2 3 48 5 06 71 9
2 & Z 0 0 0 Z 0
Case 2: time-reversal symmetry T, T2 = (—=1)F.
g1 .2 3 5 % & 7 8
0 Z, Z, Z 0 0 0 Z
Case 3: time-reversal symmetry T, T2 = 1.
g &I 2 3 4.5 6 1 3
Z, Z 0 0 0 Z 0 Z,
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Free fermionic SRE phases, cont

Case 4: U(1) symmetry
d: 3 2
Z 0

Cases 1-3 are related to Clifford algebras over R and exhibit periodicity
modulo 8.

Case 4 is related to Clifford algebras over C and exhibits periodicity
modulo 2.
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The d = 1 case

The d = 1 case can be analyzed "by hand”.

@ Only (—1)F: ground state can be bosonic (—1)F =1 or fermionic
(-1)F = —-1.

o Time-reversal symmetry T, T2 = (—1)F: fermionic states come in

pairs (" Kramers doublets” ), hence the ground state must be bosonic.
@ T2 = 1: ground state can be bosonic or fermionic.

@ U(1): the ground state has electric charge Q € Z, (—1)F
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The d = 2 case

Only (—1)F: the 1d edge may carry a single Majorana fermion (with
zero energy) . Two of them can “pair up” to give a trivial SRE phase.
Equivalently: a single massive Majorana fermion in 2d can have
m>0orm<0.

Time-reversal symmetry T, T2 = (—1)F: a pair of Majorana zero
modes (Kramers doublet) on the edge.

T? = 1: the 1d edge may carry Majorana zero modes which cannot
pair up.

U(1): edge fermions must be complex (Dirac), can always gap them
out.
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Periodicity

Free fermionic SRE phases are related to Morita-equivalence classes of real
and complex) Clifford algebras (Kitaev 2009).

Real (resp. complex) Clifford algebras exhibit mod 8 (resp. mod 2)
periodicity (Bott periodicity). Hence the classification of free fermionic
SRE phases with a fixed symmetry exhibits periodicity in d.

Mendeleev (1869) showed that chemical elements exhibit approximate
mod 8 periodicity (not related to Bott periodicity, as far as | know). But
as the atomic number increases, new phenomena arise (radioactivity,
instability, etc.).

We will see that once interactions are included, periodicity in d is
destroyed: for large d there are more phases than for small d.
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Quantum Hall response

If a system has a U(1) symmetry, it can be coupled to a background
electromagnetic field A = A, dx*.

In 3d, one can ask if constant electric field induces a current in the
perpendicular direction:

1 . .
b= 5=0xEy,  Ey = Ay -8, A0.

oxy is called Hall conductivity. In an SRE phase it is quantized.

One can encode quantum Hall response by an effective action:

o = 90 Setr = = f AdA.

5A#‘ 47

Similarly, for any odd d we can write down a U(1) Chern-Simons action
encoding “quantum Hall response” . Its coefficient is an integer.
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Thermal Hall response

If U(1) symmetry is absent, oy, is not defined. But we can always study
thermal Hall conductivity: energy flux in the direction perpendicular to the
thermal gradient.

This flux is not associated with dissipation and can also be described by
Seff- Sefr now depends on the metric. In the IR limit, it is invariant under
rescaling and depends only on the Levi-Civita connection w. In 3d the
action is

.

2
Seff = 7 Tr (wdw - §w3) ., KELZ.

More generally, gravitational Chern-Simons terms can be written if

d=4k — 1.

For free fermion SREs in 3d with U(1) symmetry, k and oy, are
proportional. Equivalently, edge states are free chiral fermions with unit
U(1) charge, so a single integer suffices to characterize the phase.
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Bosonic SRE phases

Bosons tend to form bose-condensates, to get a nontrivial phase need to
understand interacting systems of bosons.

Case-by-case studies suggest the following classification in low dimensions:
Case 1: no symmetry.

g 12 3 8
0 0 Z O

Case 2: time-reversal symmetry T, T2 = 1.
g 1 X 3 4

0 Z; 0 Zy®Z
Case 3: U(1) symmetry
g 1. 2 3 4
Z 0 ZoZ 0
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Some questions

1. Can one find a classification scheme for bosonic SRE phases valid for all
dimensions and all symmetry groups?

2. Can one find a similar classification for fermionic SRE phases which is
valid for strongly interacting systems?

3. Are there fermionic SRE phases whose existence depends on
interactions?

A partial answer to the first question is provided by the group cohomology
classification.
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Group cohomology

For any finite group G one can define BG, the classifying space of
G-bundles. It is a space of type K(G,1), that is, m1(BG) = G,
mi(BG) =0 for i > 1.

E.g., a model for BZ; is RIP*°.

A principal G-bundle on any X is a pull-back of a universal principal
G-bundle EG on BG.

Group cohomology of G with coefficients in an abelian group K is defined

to be H*(BG, K).

More generally, let K be an abelian group with an action p of G. It gives
rise to a flat bundle K” over BG with fiber K. Group cohomology of G
with coefficients in (K, p) is H*(BG, K?).
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Group cohomology classification of bosonic SREs

Chen, Gu, Liu & Wen (2012) proposed a general classification scheme for
bosonic SRE phases based on group cohomology.

Let G be a finite internal symmetry. Chen et al. proposed that in d
space-time dimensions bosonic SRE phases with symmetry G are classified

by HY(BG, U(1)).

Let G be a finite symmetry involving time-reversal. Thus we are given a
homomorphism p : G — Z,. Chen et al. proposed that bosonic SRE
phases are classified by HY(BG, U(1)?). Here the action of G on U(1) is
obtained by combining the homomorphism G — Z; and the action of Z>
on U(1) given by complex conjugation.
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Why group cohomology?

For G not involving time-reversal, there is a simple explanation.

We can promote G to a gauge symmetry and couple the system to a
background gauge field A. It is a (flat) G-connection on a principal
G-bundle.

Integrating out the “matter”, we get an effective action for A. If we
assume that this action is topological, possible actions in dimension d are

classified by HY(BG, U(1)) (Dijkgraaf and Witten 1990).

The case with time-reversal symmetry is a bit more complicated.
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Comments

1. The assumption that the action is topological only applies to phases
with zero thermal Hall response.

2. If G is not finite, Chen et al. proposed to use Borel group cohomology
of G. For G = U(1) this is more or less the same as regarding U(1) as a
limit of Zp for N — oo.

3. There is a version of the proposal for fermionic systems (" group

supercohomology”) Gu & Wen 2012.

4. For d = 1, the statement is merely that the SRE phase is characterized
by the way G acts on the (unique) ground state. Obviously true.

5. For d = 2, it has been proved that bosonic SRE phases are labeled by
H?(BG, U(1)?) (Chen, Gu, Wen 2011, Kitaev & Fidkowski 2011).

6. For bosonic SRE phases in d = 4 with time-reversal symmetry the
group cohomology proposal gives Zy, while the correct answer appears to

be Zy @ Zy (Vishwanath & Senthil 2012).
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Bosonic SREs with time-reversal symmetry

Let us look again at the bosonic SRE phases with time-reversal symmetry
and compare with unoriented bordisms of a point Q9 (pt):

e} = 3 4 k- 7 9
0 Z; 0 Zy®Zy Zy 73 Zp 73
Perhaps the correct classification should rely on cobordism groups of BG

rather than its cohomology groups (A.K. 2014).

In fact, a footnote in Dijkgraaf-Witten (1990) mentions that if the
space-time is a manifold rather than a general topological space, it is more
natural to consider cobordisms of BG.
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Bordism groups of a point

Two closed d-manifolds Ml and M, are called cobordant if there exists a
d + 1-dimensional compact manifold N with boundary My U M>. This is
an equivalence relation.

The set of cobordism classes of closed d-dimensional manifolds is called
the unoriented bordism group of a point, Q9(pt). Group operation is
given by the disjoint union. These groups have been computed by R.
Thom for all d.

If we require everything to be oriented, we get the oriented bordism group

ng(pt). In low dimensions they are:

d S % % by B

| IR
0 0 0 Z2 Z, 0 0 ZoZ
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Bordism groups of a space

These are special cases 01: the following construction (Atiyah 1960). Let X
be a topological space with a Z, local system p. If X is a manifold M, it
has a canonical Z; local system (the orientation bundle) which we denote
Em. If M is oriented, &y is given a trivialization.

Define the group 24(X, p) as follows: an element of Q4(X, p) is
represented by a closed d-dimensional manifold M equipped with a map
f: M — X and an isomorphism F : f*p ~ &p. We consider triples

(M, f,F) up to cobordism. Group operation is given by the disjoint union.

Example 1: If p is trivial, M must be oriented. Thus Qq4(X, p) = Q3°(X).

Example 2: If X = BZ, and p = EZ,, then f is determined by M up to
homotopy. Thus Qq(BZy, EZy) = Q9 (pt).
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Gauged symmetries and bordisms of BG

Suppose we are given a finite symmetry group G and a homomorphism
p: G — Zp. If pis trivial, G consists of internal symmetries only. Since G
does not contain orientation-reversing elements, the space-time M on
which the SRE phase lives can be given an orientation.

Gauging G means choosing a G gauge field A on M. Equivalently, A is a
map M — BG. The pair (M, A) thus defines an element of Q3°(BG).

If p is nontrivial, G contains time-reversing elements. Gauging such a
symmetry means allowing M to be unorientable. The G gauge field A now
satisfies a constraint: p(A) must be a connection on the orientation bundle
M.

Equivalently, if A is regarded as a map M — BG, then po A: M — BZ,

must be such that (po A)*EZ> ~ &y. Thus (M, A) defines an element of
Qq4(BG, p).
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Cobordisms with U(1) coefficients

Group cohomology classification makes use of

HY(BG, U(1)) = Hom(Hq4(BG), U(1)).

Similarly, we define oriented cobordisms with U(1) coefficients as
Q$0(BG, U(1)) = Hom(Q3°(BG), U(1)).

More generally, we define
Q9(BG, U(1)?) = Hom(Qq4(BG, p), U(1)).

Cobordisms with U(1) coefficients form a generalized cohomology theory.
There is a map

HY(BG, U(1)?) = QY(BG, U(1)?).
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The cobordism proposal for bosonic SREs

For trivial p, we propose that bosonic SRE phases with symmetry G are
classified by the Pontryagin dual of the torsion part of Q3°(BG) (A.K.
2014).

That is, if Q3°(BG) contains a free part, then QZ,(BG, U(1)) contains
U(1) factors, and we quotient by them.

This proposal applies to bosonic SRE phases with trivial thermal Hall
response and finite G.

If p is nontrivial, Q4(BG, p) has no free part, so we propose that bosonic

SRE phases are classified by Q9(BG, U(1)?).

Thermal Hall response must vanish in this case because gravitational
Chern-Simons terms break T.
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The cobordism proposal for fermionic SREs

For simplicity, let us consider the following three cases (R. Thorngren, A.
Turzillo, Z. Wang, A.K. 2014).

Case 1: No symmetry (except (—1)F). Use the Pontryagin-dual of the
torsion part of Qgpm(pt) and include thermal Hall conductivities for d = 3
and d =7.

g 1 2 3 8

4 5 &
2 Z 0Z 0 0 0 Z X
4

g 8 7 w4 K & 7 8 @
Zo Za Z 0 0 0 Z2 0 Z3

Note: in d = 7 there are two distinct gravitational Chern-Simons terms,
because in d = 8 there are two Pontryagin densities:

prr~TeR®, pt~(TeR)
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The cobordism proposal for fermionic SREs, cont

Case 2: Time-reversal symmetry T, T2 = (—1)F. Use Q4. (pt).
g 1 2 3 8§ S5 & 7 8 9
0 Zz Zz Z]_ﬁ 0 0 1 Zg X Z32 0

.
Case 3: Time-reversal symmetry T, T2 = 1. Use Qf;’,,.n_(pt).
g 1. 2 3 49 L & 4§ 8 9%

Z» Zg 0 0 0 Zy 0 Z5 Z3
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A reminder on Pin and Spin groups

Spin(d) is an extension of SO(d) by Zo,:
{£1} — Spin(d) — SO(d).
There are two natural extensionstof O(d) by Z; called Pin™(d) and
Pin~—(d).
o Pint: a reflection P € O(d) lifts to P € Pin*(d) such that P2 = 1.
@ Pin—: a reflection P € O(d) lifts to P € Pin—(d) such that P2 = —1.
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Comments on the fermionic case

1. Reproduces known results about interacting fermionic SRE phases.

2. Predicts new interacting fermionic SRE phases for d > 6.

3. Disagrees with “group supercghomology” for d = 4 and T2 = 1.

4. Some fermionic SREs are equivalent to bosonic SREs; this corresponds
to known maps from SO cobordisms to Spin cobordisms and from O
cobordisms to Pin cobordisms.
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What does it all mean?

Consider an SRE phase on a closed d-manifold M with a G-gauge field A.
The partition function is a complex number exp(iSesr(M, A)), where S is
real.

@ If the thermal Hall response vanishes, Sefr depends only on the
topology of M and A.
@ Sqr is “local” and thereforexadditive under disjoint union.

@ S changes sign under orientation reversal (CPT).

If Sefr is cobordism-invariant, exp(iSesr) becomes a function

Q4(BG, p) — U(1)

If we classify SRE phases up to homotopy, need to ignore continuous
parameters in Sgr. This is equivalent to keeping only the torsion part of

Qq4(BG, p).
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An effective action from cobordisms

Consider again bosonic SRE phases with time-reversal symmetry. R. Thom
showed that the unoriented cobordism class of M is determined by its
Stiefel-Whitney numbers. Thus

where w; € H'(M, Z3) is an SW class and P is a polynomial.

e d = 1: all SW numbers vanish — no nontrivial SRE phases.

o d =2: wi = wy — unique nontrivial SRE with Sgr ~ [ wy.

@ d = 3: all SW numbers vanish — no nontrivial SRE phases.

o d = 4: two independent actions, [wy and [ w3.
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Comments

The effective action can be used to analyze the edge physics of the

SRE phase.

What if G is a compact Lie group?. Need to study the classifying
space of flat G-connections.

In the fermionic case the effective action does not look local.

For example, for d = 2 and no symmetry, the only cobordism
invariant of a spin structure is the Arf invariant (even vs. odd %pin
structures). It is not an integral over M of a 2-cochain.

For d = 4 and time-reversal symmetry, T2 = (—1)F, the only
cobordism invariant of a Pin™ structure is the eta-invariant. It is also
nonlocal.

There is a lot to be understood here!
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