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Abstract: <span>We consider the problem of reconstructing global quantum states from local data. Because the reconstruction problem has many
solutions in general, we consider the reconstructed state of maximum global entropy consistent with the local data. We show that unique ground
states of local Hamiltonians are exactly reconstructed as the maximal entropy state. More generally, we show that if the state in question is a ground
state of alocal Hamiltonian with a degenerate space of locally indistinguishable ground states, then the maximal entropy state is close to the ground
state projector. We also show that local reconstruction is possible for thermal states of local Hamiltonians. Finally, we discuss a procedure to certify
that the reconstructed state is close to the true global state. We call the entropy of our reconstructed maximum entropy state the "reconstruction
entropy”, and we discuss its relation to emergent geometry in the context of holographic duality. Thisis ajoint work with Brian Swingle.</span>
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What this talk is about

@ Given a set of local reduced density matrices, we establish a procedure
to reconstruct a global state that is consistent with the local data.

@ We use the reconstruction procedure to resolve some open problems
in topological order and holographic duality.
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Teaser trailer for the open problems

© Topological order: given a set of local reduced density matrices for
the ground state of some anyon model, can one determine the
universal properties of the low-energy excitations?

o We show that this is possible, with some caveats.

@ Holographic duality(AdS3/CFTy41): Balasubramanian et al. showed
that a particular linear combination of entanglement entropy on the
CFT side coincides with the length of the bulk curves in AdS3. They
conjectured that the length of the bulk curves are related to some
uncertainty in reconstructing the global state from the local data.

o We show that this is not always possible, assuming our knowledge on
the local data is sufficiently accurate.
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Key questions

@ | What does reconstruction mean in general?

@ What is our reconstruction procedure?
@ When does it work?
@ Why is it useful?
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Reconstruction problem

@ Setup: we are given a set of local reduced density matrices over k
particles which are guaranteed to be inherited from some global state,

p. €x)
e An experimentalist measures a set of expectation values over
k-particles.
o A theorist numerically computes a set of expectation values over
k-particles.
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Reconstruction problem

o Setup: we are given a set of local reduced density matrices over K
particles which are guaranteed to be inherited from some global state,

p. ex)
o An experimentalist measures a set of expectation values over
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Reconstruction problem

@ Setup: we are given a set of local reduced density matrices over k
particles which are guaranteed to be inherited from some global state,

p. €x)
e An experimentalist measures a set of expectation values over

k-particles.
e A theorist numerically computes a set of expectation values over

k-particles.

® Question: determine a global property of the system from the local
reduced density matrices. ex)

e Determine the global state.
e Determine whether the prepared state is close to some ideal state they

wanted to create, e.g., Haldane chain.
e Determine whether the system supports topological ground state

degeneracy or not.
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Reconstruction problem

@ Question: determine a global property of the system from the local
reduced density matrices. ex)
e Determine the global state.
e Determine whether the prepared state is close to some ideal state they
wanted to create, e.g., Haldane chain.
e Determine whether the system supports topological ground state
degeneracy or not.

* This may seem like a hopeless task. ex)
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Figures of merit for reconstruction procedures

© Generality: for which states does the reconstruction procedure works
well?

@ Certifiability: is it possible to “prove” that the reconstructed state is
close to the true global state?

© Efficiency: how fast can you reconstruct the global state?
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Where our work stands

Reconstruction procedure Generality | Certifiability | Efficiency
Cramer et al.(2011) MPS Yes Yes
Landon-Cardinal&Poulin(2012) | 1D MERA No Yes
Baumgratz et al.(2013) MPO No Yes
Kim (2014) 2D gapped? Yes Yes
Maximum entropy method? Unique GS Yes No
Maximum entropy method TO-GS No No
Maximum entropy method >0 No No

Our contributions
There are subtleties all over the place. Please ask if you are in

doubt!

'Needs area law assumption.
2 Jaynes(1957), Chen et al.(2012)
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Maximum entropy reconstruction is a function

R({pali=1,---,N}) = argmax S(o)
OA; =PA;
Because S(G) = S(xo1 + (1 —x)o3)

R is well-defined. is strictly concave.

Y

0.5 1
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Maximum entropy reconstruction is certifiable

Theorem (Swingle and Kim (2014))

SIR({pa}) ol < S(R({pa})) - S(0).

Clearly, S(R({pa;})) has a special meaning.
Q It is defined completely by the local data.
@ If it is &= S(p), the reconstructed state is close to the original state(p)!

© If it is ~ 0, we can be sure that the reconstructed state is close to the
original state without knowing anything about the original state!

So, we call
Srec({pA,'}) == S(R({pA.}))

as the reconstruction entropy.
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Maximum entropy reconstruction is certifiable

Theorem (Swingle and Kim (2014))

SIR({pa}) ol < SR({pa})) - S(0).

Clearly, S(R({pa;})) has a special meaning.
© It is defined completely by the local data.
@ If it is = S(p), the reconstructed state is close to the original state(p)!

© If it is ~ 0, we can be sure that the reconstructed state is close to the
original state without knowing anything about the original state!

So, we call
Srec({pA,'}) = S(R({pA.}))

as the reconstruction entropy.
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Maximum entropy reconstruction is robust

Theorem (Swingle and Kim (2014))

SR ({oa}) - oI} < S(R¥({pa}) — S(0).

Clearly, S(R°({pa,})) has a special meaning.
Q It is defined completely by the local data.
@ If it is = S(p), the reconstructed state is close to the original state(p)!

© If it is ~ 0, we can be sure that the reconstructed state is close to the
original state without knowing anything about the original state!

So, we call
Srec({pa:}) = S(R°({pa;}))

as the e—reconstruction entropy.
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Unique ground state

For a unique ground state p of some local Hamiltonian, Syec({pa;}) = 0.
° ex) H= Zf\’:l ofof  + Jof + Jof

Sketch of the argument: without loss of generality, shift the eigenvalues of
H so that the ground state energy is 0. Let pj .1 = pj ;. forall J,

Tr(p'H) = Tr(pH) = 0 > ATr(p'Pe)

*P. : projector onto the excited subspace.
** A : energy gap.

_Reconstructing quantum states from local dat August 12th, 2014 2BV/asT

Pirsa: 14080007 Page 18/29



Topological ground states

For a ground state of a topologically ordered system, S,ec({pa,}) = log N,
which is equal to the entropy of the maximally mixed state over the
ground state subspace.(N: topological ground state degeneracy.)

- 4

[ =
4

N
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Topological ground states

For a ground state of a topologically ordered system, S,ec({pa,}) = log N,
which is equal to the entropy of the maximally mixed state over the
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Thermal states at finite T

Recall that thermal state is a maximum entropy state under an energy
constraint (H) = E.

Theorem (Swingle and Kim (2014))

LR ({pad) — I} < Secl{pa) — S(o)

@ R({pa,}) has the same energy as p.
© Therefore, Srec({pa;}) < S(p).
© But S,ec({pa;}) = S(p) by the above theorem.

O Therefore, Srec({pa }) = S(p) and R({pa;}) = p.

For thermal states, reconstruction entropy is equal to the thermal entropy!
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What if there i1s an error?

So far we assumed that we know the density matrices exactly. What if we
have a limited precision? (R¢ as opposed to R). If the error scales as
~ —+— (n: number of particles), the aforementioned results remain

. poly(n) ) ,
intact under the following assumptions:

@ Locality

@ Bounded interaction strength

_Reconstructing quantum states from local dat August 12th, 2014 28 / 37

Pirsa: 14080007 Page 22/29



Key questions

@ What does reconstruction mean in general?
@ What is our reconstruction procedure?

@ When does it work?

e \Why is it useful?
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Excited states?

We have so far studied reconstruction entropy for the ground state and the
thermal states. It's only natural to study the excited states at this point.
Unfortunately, we cannot proceed without extra assumptions. Assuming

Eigenstate Thermalization Hypothesis(ETH),[Deutsch (1991), Srednicki
(1994)],

e—H/T(E)
I Trac(1E) (ED) — Tracl S5l <
for an eigenstate |E) with energy E. If € is sufficiently small, e.g., m)
e—H/T(E)

Srec(R({pA;})) ~ S(T))
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Topological ground states

Given a set of local reduced density matrices for the ground state of some
anyon model, can one determine the universal properties of the low-energy

excitations?
Yes.

@ Given {pa,}, construct R({pa }) ~ WlﬁjP.(P: projector onto the
ground state subspace)
© Diagonalize the ground state subspace.

© Obtain the minimum entangled states within the ground state
subspace, from which one can deduce the quasi-particles
braiding/statistics. [Zhang et al. (2012)]

1 ang et al.
lpa} > = D) (W Zhang et 3, 6 and U matrices.
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Quantum critical point

Given a set of local reduced density matrices for the ground state of some

1D critical system, can one determine the central charge?
Yes.

© Given {pa.}, construct R({pa.}) =~ [o) (¥o|.(|tb0): ground state)
@ Use S(A) ~ 5 log/a to extract c.

S(A)~< log !
{oa} B G.5. JA3lel,
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Quantum critical point

Given a set of local reduced density matrices for the ground state of some

1D critical system, can one determine the central charge?
Yes.

© Given {pa.}, construct R({pa.}) = [to) (¥o|.(|t00): ground state)
@ Use S(A) ~ 5 log/a to extract c.
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Quantum critical point

Given a set of local reduced density matrices for the ground state of some

1D critical system, can one determine the central charge?
Yes.

© Given {pa.}, construct R({pa.}) = [t0) (¥o|.(|tb0): ground state)
@ Use S(A) ~ 5 log/a to extract c.

S(A)~E log !
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Thermal states at finite T

Recall that thermal state is a maximum entropy state under an energy
constraint (H) = E.

Theorem (Swingle and Kim (2014))

LR ({pad) — I} < Secl{pa) — S(o)

@ R({pa,}) has the same energy as p.
© Therefore, Srec({pa;}) < S(p).
© But S,ec({pa;}) = S(p) by the above theorem.

O Therefore, Srec({pa }) = S(p) and R({pa;}) = p.

For thermal states, reconstruction entropy is equal to the thermal entropy!
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