Title: Classical statistics: resolving paradoxes since 1749
Date: Aug 19, 2014 03:30 PM
URL: http://pirsa.org/14080005
Abstract: There has been renewed interest in the effect that pre and postselection has on the foundations of quantum theory. Often, but not solely, in conjunction with weak measurement, pre and postselection scenarios are said to simultaneous create and resolve paradoxes. These paradoxes are said to be profound quandaries which bring us closer to the resolving the mysteries of the quantum. Here I was show that the same effects are present in classical physics when postselection and disturbance are allowed. In particular, I will demonstrate that anomalous weak values and protective measurements are already present in classical theory, thereby showing that these effects do not represent something uniquely quantum nor something that ought to be thought of as paradoxical. This is joint work with Josh Combes and Matt Leifer.

Classical postselection and disturbance "paradoxes"

Chris Ferrie (CQuIC/UNM)

Joint work with:
Josh Combes
Matt Leifer

Weak values and protective measurement

THE Postulate

In any measurement of the observable associated with the operator \hat{A}, the only values that will ever be observed are the eigenvalues a, such that $\hat{A}|a\rangle=a|a\rangle$.

If value a is observed, then regardless what the initial state $|\psi\rangle$ was, the post-measurement state "collapses" to $|a\rangle$.

THE Postulate

In any measurement of the observable associat the operator \hat{A}, the only values that will ever k are the eigenvalues a, such that $\hat{A}|a\rangle=a|a\rangle$.

If value a is observed, then regardless what the state $|\psi\rangle$ was, the post-measurement state "col

To measure \hat{A}, couple the system to a "meter" via the interaction:

$$
U=e^{-i \hat{A} \otimes \hat{P}}
$$

The initial state of the system and meter $|\psi\rangle|\Phi\rangle$ becomes:

$$
U|\psi\rangle|\Phi\rangle=\sum_{a}|a\rangle\langle a \mid \psi\rangle e^{-i a \hat{P}}|\Phi\rangle
$$

We want to understand the transition to some other state $\left|a^{\prime}\right\rangle|q\rangle$:

$$
\left\langle a^{\prime}\right|\langle q| U|\psi\rangle|\Phi\rangle=\left\langle a^{\prime} \mid \psi\right\rangle \Phi\left(q-a^{\prime}\right)
$$

Weak measurement

Recall:

$$
U|\psi\rangle|\Phi\rangle=\sum_{a}|a\rangle\langle a \mid \psi\rangle e^{-i a \hat{P}}|\Phi\rangle .
$$

What about some other final state $|\phi\rangle|q\rangle$?

$$
\langle\phi|\langle q| U|\psi\rangle|\Phi\rangle=\sum_{a}\langle\phi \mid a\rangle\langle a \mid \psi\rangle \Phi(q-a) .
$$

Weak values

$$
\begin{aligned}
\langle\phi \mid\langle q| U \mid \psi\rangle \Phi\rangle & =\sum_{a}\langle\phi \mid a\rangle\langle a \mid \psi\rangle \Phi(q-a) \\
& \approx\langle\phi \mid \psi\rangle \Phi(q)-\langle\phi| A|\psi\rangle \Phi^{\prime}(q) \\
& =\langle\phi \mid \psi\rangle\left(\Phi(q)-\frac{\langle\phi| A|\psi\rangle}{\langle\phi \mid \psi\rangle} \Phi^{\prime}(q)\right) \\
& =\langle\phi \mid \psi\rangle \Phi\left(q-\frac{\langle\phi| A|\psi\rangle}{\langle\phi \mid \psi\rangle}\right) \\
& \text { weak value: }
\end{aligned}
$$

$$
a_{w}=\frac{\langle\phi| A|\psi\rangle}{\langle\phi \mid \psi\rangle}
$$

selection and paradoxes"

[NM)

With $s \in\{ \pm 1\}$ and $\lambda \in[0,1]$ consider the POVM elements:

$$
E_{s}=\frac{1}{2}\left(\mathbb{I}+s \lambda \sigma_{z}\right)
$$

Check:

$$
\begin{aligned}
& \lambda=0 \Rightarrow E_{s}=\mathbb{I} / 2 \\
& \lambda=1 \Rightarrow E_{s}=|s\rangle\langle s|
\end{aligned}
$$

With $\lambda \approx 0$, we use the Kraus operators:

$$
M_{s}=\sqrt{E_{s}}=\sqrt{\frac{1}{2}}\left(\mathbb{I}+\frac{s \lambda}{2} \sigma_{z}\right)+O\left(\lambda^{2}\right)
$$

J. L. Garretson, H. M. Wiseman, D. T. Pope and D. T. Pegg, J. Opt. B: Quantum Semiclass. Opt. 6, 506 (2004)

$$
M_{s}=\sqrt{E_{s}}=\sqrt{\frac{1}{2}}\left(\mathbb{I}+\frac{s \lambda}{2} \sigma_{z}\right)+O\left(\lambda^{2}\right) .
$$

J. L. Garretson, H. M. Wiseman, D. T. Pope and D. T. Pegg,
J. Opt. B: Quantum Semiclass. Opt. 6, 506 (2004)

After the weak measurement, let us do a second strong measurement in the basis $\left\{|\phi\rangle,\left|\phi_{\perp}\right\rangle\right\}$.

Then, we ask what the value of weak measurement was, conditional on the final state being $|\phi\rangle$ (i.e. we postselect): $\mathbb{E}_{s \mid \phi, \psi}[s]$.

$$
\begin{aligned}
\mathbb{E}_{s \mid \phi, \psi}[s] & =\sum_{s= \pm 1} s \operatorname{Pr}(s \mid \phi, \psi) \\
& =\sum_{s= \pm 1} s \frac{\operatorname{Pr}(\phi \mid s, \psi) \operatorname{Pr}(s \mid \psi)}{\operatorname{Pr}(\phi \mid \psi)} \\
& =\frac{1}{\operatorname{Pr}(\phi \mid \psi)} \sum_{s= \pm 1} s\left|\frac{\langle\phi| M_{s}|\psi\rangle}{\sqrt{\operatorname{Pr}(s \mid \psi)}}\right|^{2} \operatorname{Pr}(s \mid \psi) \\
& \left.=\frac{1}{\operatorname{Pr}(\phi \mid \psi)} \sum_{s= \pm 1} s\left|\langle\phi| \frac{\mathbb{I}+\frac{1}{2} s \lambda \sigma_{z}}{\sqrt{2}}\right| \psi\right\rangle\left.\right|^{2} \\
& =\cdots=\lambda \frac{\langle\phi| \sigma_{z}|\psi\rangle}{\langle\phi \mid \psi\rangle}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}_{s \mid \phi, \psi}[s] & =\sum_{s= \pm 1} s \operatorname{Pr}(s \mid \phi, \psi) \\
& =\sum_{s= \pm 1} s \frac{\operatorname{Pr}(\phi \mid s, \psi) \operatorname{Pr}(s \mid \psi)}{\operatorname{Pr}(\phi \mid \psi)} \\
& =\frac{1}{\operatorname{Pr}(\phi \mid \psi)} \sum_{s= \pm 1} s\left|\frac{\langle\phi| M_{s}|\psi\rangle}{\sqrt{\operatorname{Pr}(s \mid \psi)}}\right|^{2} \operatorname{Pr}(s \mid \psi) \\
& \left.=\frac{1}{\operatorname{Pr}(\phi \mid \psi)} \sum_{s= \pm 1} s\left|\langle\phi| \frac{\mathbb{I}+\frac{1}{2} s \lambda \sigma_{z}}{\sqrt{2}}\right| \psi\right\rangle\left.\right|^{2} \\
& =\cdots=\lambda \frac{\langle\phi| \sigma_{z}|\psi\rangle}{\langle\phi \mid \psi\rangle}
\end{aligned}
$$

After the weak measurement, let us do a second strong measurement in the basis $\left\{|\phi\rangle,\left|\phi_{\perp}\right\rangle\right\}$.

Then, we ask what the value of weak measurement was, conditional on the final state being $|\phi\rangle$ (i.e. we postselect): $\mathbb{E}_{s \mid \phi, \psi}[s]$.

$$
\lim _{\lambda \rightarrow 0} \mathbb{E}_{s \mid \phi, \psi}\left[\frac{s}{\lambda}\right]=a_{w}
$$

Preselect on $\psi=+1$
Postselect on $\phi=-1$

$$
\begin{aligned}
\mathbb{E}_{s \mid \phi, \psi}\left[\frac{s}{\lambda}\right] & =\sum_{s= \pm 1} \frac{s}{\lambda} \operatorname{Pr}(s \mid \phi, \psi) \\
& =\sum_{s= \pm 1} \frac{s}{\lambda} \frac{\operatorname{Pr}(\phi \mid s, \psi) \operatorname{Pr}(s \mid \psi)}{\operatorname{Pr}(\phi \mid \psi)} \\
& =\frac{1}{\lambda \operatorname{Pr}(\phi \mid \psi)} \sum_{s= \pm 1} s\left(\frac{1+s \lambda-\delta}{1+s \lambda}\right)\left(\frac{1+s \lambda}{2}\right) \\
& =\frac{1}{\operatorname{Pr}(\phi \mid \psi)}
\end{aligned}
$$

$$
=\frac{1}{1-\delta}
$$

$$
\begin{aligned}
\operatorname{Pr}(\phi \mid \psi) & =\sum_{s= \pm 1} \operatorname{Pr}(\phi, s \mid \psi) \\
& =\sum_{s= \pm 1} \operatorname{Pr}(\phi \mid s, \psi) \operatorname{Pr}(s \mid \psi) \\
& =\sum_{s= \pm 1}\left(\frac{1+s \lambda-\delta}{1+s \lambda}\right)\left(\frac{1+s \lambda}{2}\right) \\
& =\sum_{s= \pm 1} \frac{1+s \lambda-\delta}{2} \\
& =1-\delta
\end{aligned}
$$

Preselect on $\psi=+1$
Postselect on $\phi=-1$

$$
\begin{aligned}
\mathbb{E}_{s \mid \phi, \psi}\left[\frac{s}{\lambda}\right] & =\sum_{s= \pm 1} \frac{s}{\lambda} \operatorname{Pr}(s \mid \phi, \psi) \\
& =\sum_{s= \pm 1} \frac{s}{\lambda} \frac{\operatorname{Pr}(\phi \mid s, \psi) \operatorname{Pr}(s \mid \psi)}{\operatorname{Pr}(\phi \mid \psi)} \\
& =\frac{1}{\lambda \operatorname{Pr}(\phi \mid \psi)} \sum_{s= \pm 1} s\left(\frac{1+s \lambda-\delta}{1+s \lambda}\right)\left(\frac{1+s \lambda}{2}\right) \\
& =\frac{1}{\operatorname{Pr}(\phi \mid \psi)}
\end{aligned}
$$

$$
=\frac{1}{1-\delta}
$$

\square
Cornell University
arXiv.org > quant-ph > arXiv: 1403.2362

Quantum Physics
How the result of a single coin toss can turn out to be 100 heads
Christopher Ferrie, Joshua Combes

Protecting the bias of a coin

Protecting the bias of a coin

$$
\begin{gathered}
T=\left(\begin{array}{cc}
a & b \\
1-a & 1-b
\end{array}\right) \\
\text { If } a=1-b \frac{1-\psi}{\psi}
\end{gathered}
$$

$$
\text { then } T\binom{\psi}{1-\psi}=\binom{\psi}{1-\psi}
$$

Summary:

- Classical anomalous weak values
- Classical protective measurement

Does the postselection formalism point to what is uniquely "quantum" about quantum theory?

Summary:

- Classical anomalous weak values
- Classical protective measurement

Does the postselection formalism point to what is uniquely "quantum" about quantum theory?

Thank you!

$\left|x=|A|^{2}(\infty) \Rightarrow\right.$ not physical!
eral Solutions:

$$
k) e^{\left(\left(k x-\frac{\hbar k^{2}}{2 m} t\right)\right.} d k
$$

$$
\left|x=|A|^{2}(\infty) \Rightarrow\right. \text { not physical! }
$$

[-1]

