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Abstract: <span>There is a strong correlation between the sun rising and the rooster crowing, but to say that the one causes the other is to say more.
In particular, it says that making the rooster crow early will not precipitate an early dawn, whereas making the sun rise early (for instance, by
moving the rooster eastward) can lead to some early crowing. Intervening upon the natural course of events in this manner is a good way of
discovering causal relations. Sometimes, however, we can't intervene, or we'd prefer not to. For instance, in trying to determine whether smoking
causes lung cancer, we'd prefer not to force any would-be nonsmokers to smoke. Fortunately, there are some clever tricks that allow us to extract
information about what causes what entirely from features of the observed correlations. One of these tricks was discovered by the physicist John
Bell in 1964. In a groundbreaking paper, he used it to demonstrate the seeming impossibility of providing a causal explanation of certain quantum
correlations. This revealed a fundamental tension between quantum theory and Einstein's theory of relativity --the two central pillars of modern
physics. It isatension that is still with us today. </span>
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From XKCD comics
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Simpson’s Paradox

P(recovery | drug) > P(recovery | no drug)
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Simpson’s Paradox

P(recovery | drug) > P(recovery | no drug)

P(recovery | drug, male) < P(recovery | no drug, male)
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Simpson’s Paradox

P(recovery | drug) > P(recovery | no drug)
P(recovery | drug, male) < P(recovery | no drug, male)

P(recovery | drug, female) < P(recovery | no drug, female)

no drug

male 180/300 =60%  70/100 = 70%
female 20/100 = 20%  90/300 = 30%

combined 200/400 = 50% 160/400 = 40%
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Simpson’s Paradox

recovery — treatment
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Simpson’s Paradox

P(recovery | do (drug)) # P(recovery | observe (drug) )
causation correlation
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How can we infer
causal relations from correlations?

J. Pearl, Causality: Models, Reasoning and Inference

P. Spirtes, C. Glymour, R. Scheines, Causation, Prediction
and Search
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Causal Model
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Reichenbach’s principle
Statistical correlations must be explained causally

If Xand Y are correlated, then

A
X—>Y o X<+—Y o /N,
X Y
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Reichenbach’s principle
Statistical correlations must be explained causally

If Xand Y are correlated, then

A
X—>Y or X<+—Y o /N,
X Y

A A
or LN\ or LN\,
X —>Y X &—Y
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Causal Model

Causal Causal-Statistical
Structure Parameters
P(W)
P(S)
/
\ P(T)
T '\T 1’(\\5'/‘ u'}')
P(Y|T,1

* Parentless variables are independently distributed
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Causal Model

Causal Causal-Statistical
Structure Parameters
P(W)
SN P
X +—Y P(T)
T '\T P(X|S.T,W,Y)
g T P(Y|T,W)

P(IX, YW, S5T)=PX|S,T,W,Y)P(Y|T,W)P(W)P(S)P(T)

Causal inference algorithms seek to solve the inverse problem
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Inferring facts about the causal structure from
statistical independences
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Causal Model

P(W)
/W\ P(S)
X «+— Y P(T)
T'\T l’(\\SIH})
S T P(Y|T,)

P(X,Y, W, S5,T)=PX|S, T, W.Y))P(Y|T,W)P(W)P(S)P(T)

Def'n: A and B are conditionally independent given C
P(A|B,C) = P(A|C) Denote this
P(B|A,C) = P(B|C) (4 ")
P(A,B|C) = P(A|C)P(B|C)
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A C ALC
fork \B)’ :> (A L C|B)
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A C ALC
fork ”\B/" :> (A L C|B)

confounded A — C , ,
W At (C
cause 5 (A C|B)
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A C AYC
fork \B)’ ’:> (A L C|B)

confounded A — C - ‘
\ P AL (C
cause B (A £ C|B)

A C ‘
collider |::> AL
\B‘/ (A £ C|B)
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Al B A r? B
and no other :>

independence
relations
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Al B A r? B
and no other :>

independence
relations
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ALlLB A B PiA)

and no other ::> N K P(B)

' C P(C|A, B)
independence
relations Ae_ B PO
. X PBO) x
C P(A|B,C)

No Fine-tuning!
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A key assumption of causal discovery algorithms

No fine-tuning

A causal model of an observed distribution is fine-tuned if
the conditional independences in the distribution only
hold for a set of measure zero of the values of the
causal-statistical parameters in the model
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Does smoking cause lung cancer?

SLC |::> S—»c ?

s C
X2 0

"
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Does smoking cause lung cancer?

SLC |:> S—»c 7?

s C
L P

"

Suppose you also observe

SLOC|T

and no other independences
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Does smoking cause lung cancer?

SLC|T T
and no other |:> S;\ /;C x
independence )

relations
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Inferring facts about the causal structure from
the strength of correlations
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Quantum predictions for
P(A B XY)
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There are two possible measurements, H and T,
with two outcomes each: green or red

Suppose which of Hor T occurs at each wing is chosen at random

1. Whenever the same

, H and H
measurement is made on A o
and B, the outcomes always Tand T
agree
2. Whenever different Hand T
measurements are made on
A and B, the outcomes or
‘ Tand H

always disagree
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There are two possible measurements, Hand T,
with two outcomes each: green or red

Suppose which of H or T occurs at each wing is chosen at random

1. Whenever the same H and H
measurement is made on A or
and B, the outcomes always Tand T

2. Whenever different Hand T
measurements are made on or
A and B, the outcomes T and H

always agr
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A: Rig the game so that the choices
of settings are not random but
instead are correlated with the
local strategies

But surely nature isn't so
conspiratorial...
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Tension with the theory of relativity

Outcome is

registered
L

QOutcome is

registered
]

Mmt is chosen Mmt is chosen
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P(X,Y)

= (3[0] + 3[1])(5[0] + 3 [1])

PlABX,.Y) :> T T ?
= 2[00] + 3[11] f XY =0

= 2[01] + 3[10] if XY =1
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* Reichenbach’s principle

* No fine-tuning

@

Contradiction with quantum theory and
experiment
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