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Abstract: <span>After the 7 and 8 TeV LHC runs, we have no conclusive evidence of physics beyond the Standard Model, leading us to suspect that
even if new physicsisdiscovered during run 11, the number of signal events may be limited, making it crucial to optimize measurements for the case
of low statistics. | will argue that phase space correlations between subsequent on-shell decays in a cascade contain additional information compared
to commonly used kinematic variables, and this can be used to significantly improve the precision and accuracy of mass measurements. The

improvement is connected to the properties of the volume element of many-body phase space, and is particularly relevant to the case of low signal
stati stics.</span>
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Waiting For New Physics

kK SUSY 2013

After 7 and 8 TeV runs, the — =
long wait continues. o '

In the event of discovery
during run I, we are — “ cunrmtn
unlikely to get many events. TR

It will be crucial to make the 2« e
most out of a limited o} ST
amount of statistics. |
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Measuring Masses

Measuring masses of new particles is one of the
top priorities.
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Unless we get really lucky, this is non-trivial.
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Complications

No resonances

Combinatorics (pair production)
SM backgrounds

Detector resolution

Limited Statistics
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Simplest Case

Two body decays are trivial. Three body phase
space gives the Dalitz plot.
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Simplest Case

Two body decays are trivial. Three body phase
space gives the Dalitz plot.

2000 I 1600
| 1400 ilq 1 11[ |M |‘)
2500 |- 5 al = —d X -
[ on a0 oM
1000
8OO

‘) ‘)
w dll3 = const. x dm7i, dmi,

05 -500"~1000 1300 2000 2800 3000  ° Added bonus :
x 109 . .
Reading off the matrix element

Page 10/53



Pirsa: 14070023

Simplest Case

Two body decays are trivial. Three body phase
space gives the Dalitz plot.

2000 I 1600
| 1400 ilq 1 11[ |M |‘)
2500 |- 5 al = —d X -
[ on a0 oM
1000
8OO

‘) ‘)
w dll3 = const. x dm7i, dmi,

05 -500"~1000 1300 2000 2800 3000  ° Added bonus :
x 109 . .
Reading off the matrix element

Page 11/53



| Vol ooy col LT T

Simplest Case S s R
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Two body decaqare trivial. Three body phase

space gives the¢ Dalitz plot.
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How Do We Measure Masses?

Mass Measurement is basically a
survey of phase space.

The information from the interior
contains matrix element
information - complicated.

A determination of the boundary will
vield all the necessary information.

56
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Edges and Endpoints

Last particle in the decay chain is invisible.

Endpoint
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Edges and Endpoints

Last particle in the decay chain is invisible.
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Beyond 3-Body Phase Space

Basically all known (and hypothesized) particles will
decay either to two or three final state particles.

Any longer decay chain can be decomposed into a
cascade.

Isn’t it good enough to analyze the cascade step by
step, looking for edges and endpoints?

Flat direction when all masses increase.

W e
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Factorization

Naively, each stage of the cascade proceeds
independently — no phase space correlations.
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Factorization

Naively, each stage of the cascade proceeds
independently — no phase space correlations.

d*py , Cdhy
1 (Zm)2Ey, ( ZM D (2m)32E; (2m) 16" (px Zf’
v ) =1+ J
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Factorization

Naively, each stage of the cascade proceeds
independently — no phase space correlations.
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Factorization

Naively, each stage of the cascade proceeds
independently — no phase space correlations.

But this naive argument fails because of two
reasons:

* The two phase spaces are linked through the
(unknown) m,.

* There are observables m, where jand k come
from the two different subspaces.
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Beyond 3-Body Phase Space

For n>4, with one invisible particle, the
boundary of phase space is multi-dimensional,
and contains more information than the
subsequent edges and endpoints.

M7y A
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Beyond 3-Body Phase Space

Dimension of n-body phase space:
3n—4 (E/p conservation) — 3 (rot. inv.)

Max. number of LI observables (m visible final states):

m(m-1)/2
Not independent in general, but contains very

useful information about shape of boundary.

WORRY: Is the boundary well-populated?

56
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LI Description of n>3 Phase Space

For P_>{pla°°"p“}

Consider Z=1|... pi'p;

If the {p;} span 0,1,2 or 3 spatial dimensions,
then Z will have a 0,1,2 or 3 negative
eigenvalues, and exactly one positive eigenvalue.
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LI Description of n>3 Phase Space

The kinematically allowed region in phase space
then corresponds precisely to Z having one
positive and three negative eigenvalues.

Consider characteristic polynomial for Z

Det AL, xn — AP — (Z AN )
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LI Description of n>3 Phase Space
|

Simplestcase : Fbrn=4, A, = —Det[Z

The volume element is

N S '
dlT, o (3 rl’mr”l) =0 (\ dms, n")
1= ] v -‘h: “'“dl J

Enhancement at the boundary!
On-shell propagators are linear in m?,
no Jacobian factors.

=
woloayeud (_-'Fn--»l"r-' "i" L

el value
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Classification of n=4 Cascades

e X—>1+2+43+"' (no examples)

e X—> (Y —>1+2)+(Z —>3+)
— 2,4 invisible (different topology) ] )

—only 4 invisible (secretly n=3
v (secretly n=3) S

e X 1+(Y »2+(Z >3+)) v
(solvable, but good warm-up) ) // )
o« X >1+(Y —>(2+3+)) ™,

(interesting! polynomial methods don’t work.)

e X —>1+2+(Y >3+) (similar to above case)
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Benchmarks

Let us concentrate on simplest
event topology (asymmetric)

- A F O )
L'\

squark - LSP
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Setting Up the Analysis

Goal: to compare the precision of edge/endpoint
analysis to multidimensional PS analysis.

Start with ‘data’ (limited statistics). In both
analyses find best fit for unknown masses.

Repeat — look at central value and dispersion of
the best-fit mass distribution.
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Edge/Endpoint Analysis

Given a ‘mass hypothesis’

Predicted positions of edges/endpoints from
basic kinematics.

Measured positions from highest data point.

56

- . =\ r)- wedietled L INCaSUre
Test quality of hypothesis: © ( > (L redtsas b

endpts,

f)) -
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Likelihood

We really want:  P({Mx }|Data)

Use:
‘prior’
A
[ |
P({Mx}) -
P({Mx}|Data) = P(Data) P(Data|{Mx})
l C C , ‘ '
Y |
overall const. we can
meaningless calculate!
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Likelihood
P(Datal{Mx}) = || P({m;}[{Mx})

P({mj}{Mx}) =

2 2
= Sl dIT, ({mj;}) x M|

a

l Y J const.

fully determined?

Start with 3-stage cascade as warm-up

56
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Likelihood — 3-stage cascade

i . 2 . .
Given mass hypothesis and {m;; } , the remaining
’”"}2'1 can be reconstructed. 1 2 3

Keep elements in | M |2 ® //Z ‘l

that could introduce bias UET

2 2
M*y €——— M3,

between hypotheses.

‘ l l < . . T T | I
v/ A 2 2 2 2
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/ L(mg,m;,) dmi,dmi,dms, all widths CompUted Wlth{]\[\ }

Pirsa: 14070023 Page 34/53



Pirsa: 14070023

2] D I ' ) I
L(mg,m;;) : dms,
['v . 21 x

- P BN
L(Mg,m;;) =~

Likelihood — 2-stage cascade
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O(A))
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Analysis and Results — 3-stage cascade

l 2 3
Choose benchmark spectrum
74

M v 500 GeV , My 300 GeV
M, = 200 GeV, M, 100 GeV
=100

Choose mass hypotheses such that flat direction
Is adequately scanned.

Samples with N

evt

My = M, 4 (|l]ll(%(‘\’)(n\;7‘“ - BVE) 4 VB ‘H;T(H)

a
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Analysis and Results — 3-stage cascade
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Analysis and Results — 3-stage cascade
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Analysis and Results — 3-stage cascade

Mass (GeV) Phase space End-points
My 199.89 4+ 0.60 677.41 + 157.47
my 349.90 + 0.59 527.19 4+ 155.96
my 199.92 + (.59 380.11 4+ 160.57
oy 99.93 + 0.65 277.87 + 156.42
0 (—0.87 +£6.03) x 1079 .78 4+ 1.58
3 (—0.07 £ 0.38) x 1077| (0.11 4 1.54) x 102
A (—0.17 £ 0.44) x 1072 |(—0.84 + 1.44) x 10~
) (—0.09 £+ 0.66) x 1073 (1.12 4 3.08) x 102
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Analysis and Results — 2-stage cascade
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Analysis and Results — 2-stage cascade

Mass (GeV) |

my
Ty

g

345.69 +

Nevents
Phase space
195.84 4+ 11.95
12.13
96.86 -+ 13.97
0.039 £ 0.127
0.006 4+ 0.013

0.001 + 0.005

100

Endpoints
134.32 + 25.93
284.11 -+ 28.48
37.61 4 27.45
0.647 £ 0.272
0.017 4+ 0.020

0.005 £ 0.012

(

(0,89 o

Nevents
Phase space
199.40 + 0.96
349.39 + 0.97
99.56 £ 1.08
.49 + 9.97) x 10

1.05) x 107°

(0.23 + 0.38) x 1073

2
b ]

(

{

1000

Endpoints

163.32 + 11.66
312.94 12.08
63.83 £ 11.91

0.37 4+ 0.12
1.4 4+ 3.9) x 10

0.2 + 3.0) x 10
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Why does 1-D analysis fail?

3-stage cascade

..............................................................

....................................

m?,, drives the best fit to higher values at low statistics
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Why does 1-D analysis fail?

2-stage cascade

1111111

0,008

111111

m?,; and m?,, drive the best fit to lower values
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Towards a realistic analysis

Symmetric events:

Likelihood method can be generalized.
* LI formulation is tricky.
 What happens with longer cascades?

For which topologies can the likelihood method
outperform other methods?

56
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Towards a realistic analysis

Effect of spin:
* interior vs boundary

* finite number of possibilities, likelihood
method can determine best fit.

Matrix-element method has been used to
measure top quark mass.

56
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40 ) 48 52

Longer Cascades

Is the enhancement for n=4 a generic feature?

dlIl,, o Z d-‘m.fj (VA" §(As) - -

1 <j 1<

Unusual o-functions

. *——
lim / dady f(x,y)d(x* + y* — R?) \‘\KJ/

R—0 .

56
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Conclusions

We need to be ready for low statistics in Run |l

The volume element of many-body phase space
ensures that the boundary is well populated.

A full determination of the boundary vyields
significantly more information that the sum of
one-dimensional projections.

Drastic improvement for 2-stage cascade
topology. Sensitivity along flat direction.

Likelihood-based analysis is robust to
generalization and can be modified for a fully
realistic analysis.

56
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#ﬁonclusions

We need to be ready for low statistics in Run ||
The volume elekwent of many-body phase space
ensures that the boundary is well populated.

A full determination of the boundary yields
significantly more information that the sum of
one-dimensional projections.

Drastic improvement for 2-stage cascade
topology. Sensitivity along flat direction.
Likelihood-based analysis is robust to

generalization and can be modified for a fully
realistic analysis
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