Title: Homological product codes

Date: Jul 16, 2014 10:30 AM

URL: http://pirsa.org/14070013

Abstract: All examples of quantum LDPC codes known to this date suffer from a poor distance scaling limited by the square-root of the code length. This is in a sharp contrast with the classical case where good LDPC codes are known that combine constant encoding rate and linear distance. In this talk I will describe the first family of good quantum "almost LDPC" codes. The new codes have a constant encoding rate, linear distance, and stabilizers acting on at most square root of n qubits, where n is the code length. For comparison, all previously known families of good quantum codes have stabilizers of linear weight. The proof combines two techniques: randomized constructions of good quantum codes and the homological product operation from algebraic topology. We conjecture that similar methods can produce good quantum codes with stabilizer weight n^a for any a>0. Finally, we apply the homological product to construct new small codes with low-weight stabilizers.

br>This is a joint work with Matthew Hastings

br>Preprint: arXiv:1311.0885

span>

Pirsa: 14070013 Page 1/45

How good can be quantum LDPC codes?

	k	d	w
2D Surface Codes (SC) [1]	0(1)	$n^{1/2}$	4
2D Hyperbolic SC [2]	$\Omega(n)$	$\log(n)$	O(1)
3D Generalized SC [3]	0(1)	$(n\log n)^{1/2}$	0(1)
Hypergraph Product Codes [4] (almost good)	$\Omega(n)$	$n^{1/2}$	0(1)

k = number of logical qubits

d = code distance

w = sparseness

- [1] Kitaev (1997)
- [2] Zemor (2009); Delfosse (2013)
- [3] Freedman, Meyer, Luo (2002)
- [4] Tillich, Zemor (2009); Kovalev, Pryadko (2012); Freedman, Hastings (2013)

Pirsa: 14070013 Page 3/45

How good can be quantum LDPC codes?

	k	d	w
2D Surface Codes (SC) [1]	0(1)	$n^{1/2}$	4
2D Hyperbolic SC [2]	$\Omega(n)$	$\log(n)$	O(1)
3D Generalized SC [3]	0(1)	$(n\log n)^{1/2}$	0(1)
Hypergraph Product Codes [4] (almost good)	$\Omega(n)$	$n^{1/2}$	0(1)

Open problem: find good quantum LDPC codes (k and d are linear in n) or prove that such codes do not exist.

Pirsa: 14070013 Page 4/45

Pirsa: 14070013 Page 7/45

Pirsa: 14070013 Page 8/45

Pirsa: 14070013 Page 9/45

Pirsa: 14070013 Page 12/45

Pirsa: 14070013 Page 13/45

Pirsa: 14070013 Page 14/45

Pirsa: 14070013 Page 15/45

Pirsa: 14070013 Page 16/45

Pirsa: 14070013 Page 18/45

Pirsa: 14070013 Page 19/45

Pirsa: 14070013 Page 20/45

Pirsa: 14070013 Page 23/45

Pirsa: 14070013 Page 25/45

Pirsa: 14070013 Page 28/45

Pirsa: 14070013 Page 29/45

Pirsa: 14070013 Page 30/45

Pirsa: 14070013 Page 31/45

Pirsa: 14070013 Page 32/45

Pirsa: 14070013 Page 33/45

Pirsa: 14070013 Page 34/45

Pirsa: 14070013 Page 35/45

Pirsa: 14070013 Page 36/45

Pirsa: 14070013 Page 37/45

Pirsa: 14070013 Page 39/45

Pirsa: 14070013 Page 40/45

Pirsa: 14070013 Page 42/45

Pirsa: 14070013 Page 44/45

Pirsa: 14070013 Page 45/45