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Abstract: <span>All examples of quantum LDPC codes known to this date suffer from a poor distance scaling limited by the square-root of the code
length. This is in a sharp contrast with the classical case where good LDPC codes are known that combine constant encoding rate and linear
distance. In this talk | will describe the first family of good quantum "almost LDPC" codes. The new codes have a constant encoding rate, linear
distance, and stabilizers acting on at most square root of n qubits, where n is the code length. For comparison, al previously known families of good
guantum codes have stabilizers of linear weight. The proof combines two techniques: randomized constructions of good quantum codes and the
homological product operation from algebraic topology. We conjecture that similar methods can produce good quantum codes with stabilizer weight
n*afor any a>0. Finally, we apply the homological product to construct new small codes with low-weight stabilizers.<br><br>This is ajoint work
with Matthew Hastings<br>Preprint: arXiv:1311.0885</span>
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Part 1: Generalization of the hypergraph product codes
from Classical x Classical to Quantum X Quantum.
Good quantum codes with low-weight stabilizers.

Joint work with Matthew Hastings

arxiv:1311.0885,
Proc. of the 46t ACM STOC (2014)

Part 2: Efficient implementations of the Maximum
Likelihood Decoder for the 2D surface code.
Linear-time algorithm based on

Matrix Product States.

Joint work with A. Vargo, and M. Suchara,
arxiv:1405.4883
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How good can be quantum LDPC codes ?

2D Surface Codes (SC) [1] 0(1)
2D Hyperbolic SC [2] Q(n) log(n) 0(1)
3D Generalized SC  [3] 0(1) (nlog ’rl)l/2 0(1)
Hypergraph Product Codes [4] _Q(n) nl/2 0(1)

(almost good)

k = number of logical qubits
d = code distance
W = sparseness

[1] Kitaev (1997)

[2] Zemor (2009); Delfosse (2013)

[3] Freedman, Meyer, Luo (2002)

[4] Tillich, Zemor (2009); Kovalev, Pryadko (2012);
Freedman, Hastings (2013)

Pirsa: 14070013 Page 3/45



How good can be quantum LDPC codes ?

2D Surface Codes (SC) [1] 0O (1)
2D Hyperbolic SC [2] Q(n) log(n) 0(1)
3D Generalized SC  [3] 0(1) (nlogn)/? 0(1)
Hypergraph Product Codes [4] Q(n) nl/2 0(1)
(almost good)

Open problem : find good quantum LDPC codes

(k and d are linear in n) or prove that such codes
do not exist.
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How good can be quantum LDPC codes ?

2D Surface Codes (SC) [1] ( 7 I
2D Hyperbolic SC (2] Q(n) log(n) 0(1)
3D Generalized SC (3] 0(1) (nlogn)?  0(1)

Hypergraph Product Codes [4] Q(n) nl/? 0(1)
(almost good)

New result: good "almost LDPC" codes:

Homological Product Codes Q(n) Q(n) nl/2

First example of good quantum codes with a sublinear

sparseness.
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New result: good “almost LDPC" codes:

Homological Product Codes Q(n) Q(n) n

Generalizes Tillich-Zemore hypergraph product

A general method of building large quantum codes
from small ones; different from concatenation

Constant error threshold for noiseless syndromes

Potential improvement fo w = 1 for any & > 0
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Outline for part 1

1. Stabilizer codes from boundary operators

2. Homological product

3. Homological product of two random
boundary operators
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Definition:
A binary square matrix & is called a boundary operafor if
62 = 0 (mod 2)

Sparse
Boundary operator &

Stabilizer code €SS(5)
LDPC

Page 8/45



/ Parameters of the code CSS(0): \

Number of code qubits: n(8) = size(d)

Number of logical qubits:
k(8) = dim(ker(6)) — dim(im(5))

Code distance:
d(8) = min{ wt(f) : f € ker(8) \im(6) }

or f € ker(6™) \im(6") }

o

o
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Sparse boundary operators from homology

g

\“ = Linear space of cells (simplexes) C

A
|

\ g i / — Boundary operator §:C = C

N

The boundary of n-cell is a sum of (n-1)-cells:
2 §(123) = (12) + (23) + (13)
6(12)=@)+ (@) etc

5(1)=68(2)=6@B3)=0
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Homological product
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Homological product

i

e

61:C1—*Cl 62:C2—’Cz

The product manifold M = My X M3 has a linear space
of cells C = C;®C, and a boundary operator A : € — C

A2= (2@ 1 +268; ® 8, +1® (&;)* =0 (mod2)
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A=6, QI +1R 0

r Parameters of the code CSS(A): \

Number of code qubits: n(4) = n(5;)1(d2)

o
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Wishful thinking:
1. Assume d(A) = d(6,)d(63)

2. Assume that CSS(8;) and €55(62) are good codes
(but may be not LDPC).
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Wishful thinking:
1. Assume d(A) = d(6,)d(63)

2. Assume that CSS(8;) and €55(82) are good codes
(but may be not LDPC).

Then all code parameters nk,d are multiplicative under
the homological product. Sparseness w is sub-additive.

([ €SS(8,)=[[nk,d]]  CSS(A)IIN,K,D]] \

k = Q(n) N = n?

d = ), K = k% = Q(N)

w<n D = d% = Q(N),
WSW1+W2$2\[]_V-

\We get good codes with sparseness ~ VN )
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Solution: add randomness

In the classical case good LDPC codes have been originally
discovered by Gallager (1962) using randomized
constructions.

Random stabilizer codes are good with high probability
Calderbank, Shor (1996). Subsystem 2D codes with

l~d~n/? based on random matrices S.B. (2010)
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Define canonical boundary operator with a fixed size 1
and a fixed number of logical qubits k

k m m
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(" Random ensemble of boundary operators:

SI=UoU
U is random invertible n X n matrix picked uniformly,
KS is the canonical boundary operator with fixed k, n
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\

(" Random ensemble of boundary operators:

§=UsU"
U is random invertible n X n matrix picked uniformly,
Kﬁ is the canonical boundary operator with fixed &, 7

First moment argument: if the average number of
low-weight (co)cycles N is smaller than 1 then at |east
one code in the ensemble has no low-weight (co)cycles.

Pr(f € ker(6)) = Z Pr(Uf € ker(5))
f:iflscn
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Can we apply the first-moment method fo the product code?

No, the product code always has low-weight cycles, namely,
the stabilizer generators.

We must differentiate between trivial and non-trivial cycles
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Definition:

A matrix 1 of size n X 1 has Uniform Low Weight
with a constant ¢ iff each row and column of ¥ has
weight at most cn

1 has ULW(c¢)

A stabilizer generator of the product always has low
weight, but it is unlikely to have uniform low weight

Example:

A>I®)) = (6:1)®) +i & (62)) =
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Proof sketch:
5, =U,b8U71, A=6,Q1+I16;
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Proof sketch:
5, =U,8U7!, A=68+I85;

d(5,) = en Uy, A [ d(6) <en
fora=1,2 [for- somea=12

one of the input
codes is bad

both input codes are good

exp. unlikely
(union bound)
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Proof sketch:
5, =U,8U7t, A=68+I85;

d(6q) = en Uy, UzI Jd(é‘,,) <en
—=J)
Wl 'S [for somea =12
(EI Y E ker(4) \ im(4) ] has weight > cn=

with weight < cn? we are done

’Cleaning Lemma

31’ # 0 ofsize n' = n s.t.
1. 3’ has ULW(c") with ca~Ic

A’ can be extended to some
1 € ker(4) \ im(4)
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Decoding problem

Given error syndrome, guess which error has created it
(modulo stabilizers)
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Why minimum matching is not good enough ?
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Beyond MWM: previous work

deterministic algorithms randomized algorithms

Stace and Barrett, PRA 81, 022317 Use Metropolis-type algorithms
(2010) to sample errors conditioned on
Tweak the weights in the MWM 1o the observed syndrome.

favor chains with high entropy
Wootton and Loss, PRL 109 160503
Fowler, arXiv:1310.0863 (2012)

X-MWM, update weights, Z-MWM | Parallel tempering

g;;gq?;;;é;nd Poulin, PRL 104 Hutter, Wootton and Loss, PRA 89
022326 (2014)

RG decoder: approximate surface S 3
code by a concatenated code. Fastegheugiatioeisicy
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Beyond MWM: previous work

deterministic algorithms randomized algorithms

Stace and Barrett, PRA 81, 022317 Use Metropolis-type algorithms
(2010) to sample errors conditioned on

Tweak the weights in the MWM 1o the observed syndrome.

favor chains with high entropy

Wootton and Loss, PRL 109 160503
Fowler, arXiv:1310.0863 (2012)

X-MWM, update weights, Z-MWM | Parallel tempering

g;;gﬁ‘;;;é?nd PodlpdRREEES Hutter, Wootton and Loss, PRA 83
i 022326 (2014)
RG decoder: approximate surface

code by a concatenated code. FastegieugiatioNerucy
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Beyond MWM: previous work

deterministic algorithms randomized algorithms

Stace and Barrett, PRA 81, 022317 Use Metropolis-type algorithms
(2010) to sample errors conditioned on
Tweak the weights in the MWM to the observed syndrome.

favor chains with high entropy
Wootton and Loss, PRL 109 160503
Fowler, arXiv:1310.0863 (2012)

X-MWAM, update weights, Z-MWM | Parallel tempering

g:;g:gq%a;;é?nd Poulin, PRL 104 Hutter, Wootton and Loss, PRA 89
022326 (2014)

RG decoder: approximate surface o :
code by a concatenated code. Fastegiheugiatioversicy
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Some terminology:

Stabilizer group G

Pauli group
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Stabilizer group G G

hHG

Pauli group f2G J
JELY

Errors in the same coset have the same action on
the codespace
We just need to guess the coset of the actual error
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The four cosets consistent with the syndrome s :

I-coset X-coset

f(s)G f(s)XG

Y-coset Z-coset

f()YG £($)ZG

We fixed some canonical error £(S) consistent with S

X,Y,Z are the log Gherators
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Nodes = tensors

Edges = tensor indexes (0 or 1)
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Approximate contraction of 2D tensor networks
Murg, Verstraete, Cirac PRA 75, 033605 (2007)
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Approximate contraction of 2D fensor networks
Murg, Verstraete, Cirac PRA 75, 033605 (2007)

Think of the contraction as a sequence of N-qubit stafes:

3335

Pr(G) = (Vs |Wy)
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Matrix Product States (MPS)

Az(i2)
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MPS compression

Efficient compression algorithm:
schollwock, Ann. Phys. 326, 96 (2011)
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Comparison between MPS and MWM decoders

Depolarizing noise, distance d=25

TORE1Z20N1 16 18 20 1
Error rate (%)

Logical error probability

min malchlgg

16

Error rate (%)
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Comparison between MPS and MWM decoders

Depolarizing noise, distance d=25

10 12 14 16 18 20 |
Error rate (%)

Logical error probability

min matching ——

16

Error rate (%)

Pirsa: 14070013
Page 40/45



Pirsa: 14070013

X-noise:
Pr(X) =€
Pr(l)=1—¢€

Pr(Y) = Pr(Z) = 0

MLD can be implemented exactly in fime 0 (n?) using
a mapping fo matchgate quantum circuits

Enables a direct comparison between the MPS-decoder
and MLD.
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Reduction to a quantum circuit simulation

Pr(fG*) = Pr(f){olU o)

W)= ) e @

even x
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‘l’o"‘P1""Pz“’¢3"¢4"‘l’s

Key insight: 1; are fermionic Gaussian states.

Pirsa: 14070013
Page 43/45



Pirsa: 14070013

‘l’o"lp1‘"’¢'2“’¢3"¢4—’¢s

Key insight: 1); are fermionic Gaussian states.

Y = gauss(T, M)
= (@lp) - norm

M = 2d x 2d - covariance matrix
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Yoo oY Y3 = Yy > Ys

Key insight: 1; are fermionic Gaussian states.

) = gauss(T, M)
= (@) - norm

M = 2d x 2d - covariance matrix
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