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Abstract: <span>In maximum likelihood (ML) decoding, we are trying to find the most likely error given the measured syndrome. While this is
hardly ever practical, such a decoder is expected to have the highest threshold.<br>I will discuss the mapping between the ML threshold for an
infinite family of stabilizer codes and a phase transition in an associated family of Ising models with bond disorder [1]. Thisis a generalization of
the map between the toric codes and the square lattice Ising model. Quantum LDPC codes produce generally non-local spin models with few-body
interactions. A relatively ssmple Monte Carlo simulation of such a model can give an upper bound on the decoding threshold for the original code
family. This can be used to compare code families irrespectively of decoders, and to establish an absolute measure of decoder
performance.<br><br>[1] A. A. Kovalev and L. P. Pryadko, "Spin glass reflection of the decoding transition for quantum error correcting codes,"
unpublished,<br>arXiv:1311.7688 (2013).<br></span>
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Decoding threshold

Decoding threshold p.: Consider an infinite family of error
correcting codes. With probability p for independent errors per
(qu)bit, at p < p,., a large enough code can correct all errors with
success probability 7 — 1, but not at p > p,.

Example: code family with finite relative distance o = d /n.
A code can detect any error involving w < d (qu)bits, and
distinguish between any two errors involving w < d/2 qubits
each. For such a family, p. > 0/2.

The actual value of p. depends on the decoding algorithm.

Can we interpret a decoding threshold as a phase transition?
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Quantum stabilizer codes

o An|[[n, k, d]] stabilizer code Q is a 2*-dimensional subspace of the n-qubit Hilbert
space ‘H5™, a common eigenspace of operators in an Abelian stabilizer group
< ={q,..., gn-k),—1 & . Q=A{|y) : S|) = |¢) , VS € .S}

- Distance  1s minimum weight of a non-trivial operator £/ & . which com-
mutes with the stabilizer .&.

— Such a code can detect any error affecting up to d — 1 qubits, and correct any
error affecting up to t = |d /2] qubits.

Gilbert-Varshamov (GV) bound: there 1
exist stabilizer codes with rates R = k/n, 45!
R>1-Hz()—0o logy 3,0 = (f/'n.. =

$

o 06t

Q

©
Calderbank-Shor-Steane (CSS) codes: go4r Qubntam . S
stabilizer generators formed by either N o2l cssaybod
only X or only Z operators. GV bound: |
R>1-2Hs(0). 0

0 0.05 0.1 0.15 0.2
Relative distance d=d/n

s GV bound not of much use for quantum LDPC codes...
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Surface codes
Family of codes invented by Alexey Kitaev (orig: toric codes)

Stabilizer generators: plaquette A = 22 2 Z and vertex
B, = XXX X operators (this is a CSS code).

e

Jtoric code [[98, 2, 7]]
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Surface codes
Family of codes invented by Alexey Kitaev (orig: toric codes)

Stabilizer generators: plaquette Aq = Z2 2 Z and vertex
B, = X XXX operators (this i1s a CSS code).

Detectable errors: have open X chains along dual lattice or open
Z chains on the original lattice

e

Jtoric code [[98, 2, 7]]
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Surface codes
Family of codes invented by Alexey Kitaev (orig: toric codes)
Stabilizer generators: plaquette Aq = Z2 2 Z and vertex
B, = XXX X operators (this i1s a CSS code).
Detectable errors: have open X chains along dual lattice or open
Z chains on the original lattice

Undetectable error: only closed chains

Trivial undetectable error: topologically
trivial loops

Bad undetectable error: topologically
non-trivial loop = Code distance

d= L ox/n.

([n =2L%k =2,d = L]

Jtoric code [[98, 2, 7]]
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Surface codes: finite decoding threshold

Distance scales as d o< n'/? meaning zero relative distance
§ o< n~ 12, n — oo. Is there a finite decoding threshold?

Yes! [Dennis, Kitaev, Landahl & Preskill, 2002]

e Counting topologically non-trivial chains
e Mapping to the Ising model with bond disorder

Telele e orere

storic code [[98, 2, 7]]
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Surface codes: finite decoding threshold

Distance scales as d o< n'/? meaning zero relative distance
§ o< n=1/2, n — oo. Is there a finite decoding threshold?

Yes! [Dennis, Kitaev, Landahl & Preskill, 2002]

e Counting topologically non-trivial chains
e Mapping to the Ising model with bond disorder

Prob. of an undetectable chain of length d:
Qu(x) < p"#(SAW,) < (3p)°

Uncorrectable error: such a chain more
than half-filled with errors. Probability:

Py < #(SAA\V({) Z ( d )p’m ( 1 — p)d—m

m
m<|d/2]|

pd(.l') S :{d < 2(13[1)(". . 1))](1/2

e

3 ‘ y 4 ‘ 1 ‘ '
toric code [[98, 2, 7]] Neither happens at sufficiently small p!
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Surface codes: finite decoding threshold

Distance scales as d o< n'/? meaning zero relative distance
§ o< n~12, n — oo. Is there a finite decoding threshold?

Yes! [Dennis, Kitaev, Landahl & Preskill, 2002]

e Counting topologically non-trivial chains
e Mapping to the Ising model with bond disorder

Prob. of an undetectable chain of length d:
Qa(r) < p'#(SAW,) < (3p)“

Uncorrectable error: such a chain more
than half-filled with errors. Probability:

Pd S #(SA\\Td) Z ( d )]_-)'m- ( 1 — p)d—m

m
m<|d/2]|

Pi(z) < 3% x 2%[p(1 — p)]¥/?

Celele ool re

toric code [[98, 2, 7]] Neither happens at sufficiently small p!
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Surface codes: finite decoding threshold

Distance scales as d o< n'/? meaning zero relative distance
§ o< n~12 n — oo. Is there a finite decoding threshold?

Yes! [Dennis, Kitaev, Landahl & Preskill, 2002]

e Counting topologically non-trivial chains
e Mapping to the Ising model with bond disorder

storic code [[98, 2, 7]]

Conditional probability of an error in a
given sector given the syndrome s = sum
over loop configurations on top of a
representative error e.

— partition function of a bond
disordered Ising model on dual lattice
ML decoding transition <> phase
transition along the Nishimori line
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More general quantum LDPC codes

e All codes with local stabilizer generators in 2D satisfy
kd? = O(n) [Bravyi et al, 2010]

e General quantum LDPC codes: remove requirement of locality

Construction (CSS): encode generators ¢; in binary matrices.
Commutativity condition: GG = 0 mod 2
Example
Ansatz [Tillich & Zemor, 2009]: use two binary matrices H, Ho
('T" (L’ ro X1ro) QO H "1 X1y ) Héf"z Xng) QO b"(” X1 ))
(H’/ (}ot‘(u[Xu]) b*(ngx.r.'g)(?oH!/')

[f the bmdly codes with check matrices H;, H!, i = 1,2 have
parameters [n;, k;, d;] and [7;, k;, d,] respectively, the CSS code
has [[n = nyro + nory, k= ky l-_g + kiks, d]], where
min(d;, d;) < d < max(d;,d;) — finite k/n, d x nl/2

6
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Quantum hypergraph-product codes
e Finite-rate generalization of surface codes; distances d o< n'/?
- Small-weight generators ¢g;, can be measured
— Can be measured in parallel

e Price to pay: non-local stabilizer generators

H,

HY: 7 x 7circulant h(z) = 1 + . hz)=1+z+ 2°

Tillich & Zémor "09

e

Jtoric code [[98, 2, 7]]

Teleteelelete
QHPC [[98, 18, 4]]
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Quantum hypergraph-product codes

e Finite-rate generalization of surface codes; distances d o< n'/?
- Small-weight generators ¢g;, can be measured
— Can be measured in parallel

e Price to pay: non-local stabilizer generators

Hy, = HJ: 7 x 7circulant h(z) = 1 + x. Wz)=1+z+ 2°

Tillich & Zémor 09
Given a layout, it
1S easy to come up
with a spin model
map. .. but does it
have a
%&J— transition? %

Jtoric code [[98, 2, 7]] QHPC [[98, 18, 4]
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Threshold theorem and sparse-graph codes

A general code of distance d can detect all errors of weight w < d
and correct all errors of weight up to t = |d /2] (this guarantees
that any two errors will take Q to mutually orthogonal spaces.)

A finite per-qubit error probability p typically generates errors of
weight ~ pn. “Good-distance” code families have finite d /n and
thus can correct errors with high likelthood up to a threshold p...

Problem: no (limited-weight) quantum LDPC codes are known
with good asymptotic distance. At best, d o n'/=

Tillich & Zémor 2009
Andriyanova et al. 2012

Can such codes correct errors in a finite fraction of qubits?
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Threshold theorem and sparse-graph codes (cont’d)

e Start with a small per-qubit error probability p < 1.
e Connect errors affecting common gen-

erators. For small p and a sparse code

these form small disconnected clusters
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Threshold theorem and sparse-graph codes (cont’d)

e Start with a small per-qubit error probability p < 1.
e Connect errors affecting common gen-
erators. For small p and a sparse code
these form small disconnected clusters
e Key observation: disconnected clusters
can be detected independently; they do
not affect each other’s syndromes.
This implies that errors formed by clusters
of weight w < d are all detectable

ot et tetete
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Threshold theorem and sparse-graph codes (cont’d)

e Start with a small per-qubit error probability p < 1.
e Connect errors affecting common gen-
erators. For small p and a sparse code
these form small disconnected clusters
e Key observation: disconnected clusters
can be detected independently; they do
not affect each other’s syndromes.
This implies that errors formed by clusters
of weight w < d are all detectable

ot et tetete

Pirsa: 14070002 Page 19/41



Threshold theorem and sparse-graph codes (cont’d)

e Start with a small per-qubit error probability p < 1.
e Connect errors affecting common gen-
erators. For small p and a sparse code
these form small disconnected clusters
e Key observation: disconnected clusters

can be detected independently; they do
not affect each other’s syndromes.
This implies that errors formed by clusters
of weight w < d are all detectable
e Below percolation limit p., probability to have a cluster of
large weight w 1s exponentially small with w.

ot et tetete

e Maximum cluster size grows logarithmically with n (for small
enough p this is also true for confusing half-filled clusters)

Conclusion: as long as d < n®, @ > 0 (or even logarithmic), a

parse-graph code can correct errors at finite p. | "3
sparse-graph code can correct errors at finite p [Kovalev & LPP, '13]

9
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Threshold theorem for quantum LDPC codes
Kovalev & LPP "13
Theorem: For an infinite family of (7, ¢)-limited LDPC codes,
quantum or classical, where the distance « scales as a power law at
large n, asymptotically certain recovery is possible for (qu)bit de-
polarizing probabilities p < pgy, where pg > [2¢(z — 1)] 7=, and ¢
1s the base of the natural logarithm. A threshold p; > 0 also exists
for code families with distance scaling logarithmically at large n.

=50 —1).
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Threshold theorem for quantum LDPC codes
Kovalev & LPP "13
Theorem: For an infinite family of (7, ¢)-limited LDPC codes,
quantum or classical, where the distance « scales as a power law at
large n, asymptotically certain recovery is possible for (qu)bit de-
polarizing probabilities p < p,, where pg > [2¢(z — 1)] 7=, and ¢
1s the base of the natural logarithm. A threshold p; > 0 also exists
for code families with distance scaling logarithmically at large n.
r=j4—1). v -
i Recent progress: stronger CSS bound
pa = [29(€ = 1)]72, v~ 1.2
Proof steps:

e A codeword should satisfy all associated checks. To make a
particular check happy, we need to choose from ¢ — 1
positions, thus # < (¢ — 1)" optimal clusters of size w.

e Configurations where decoding could fail: codewords of size
w > d, where errors occupy half or more qubits.

10
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Decoding transition
Consider an infinite family of stabilizer LDPC codes with rate
R = k/n and decoding probability "= 1 for p < p, but not
above p...
Do we have a phase transition at p..”?

W
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Decoding transition
Consider an infinite family of stabilizer LDPC codes with rate
R = k/n and decoding probability "= 1 for p < p, but not

above p..
Do we have a phase transition at p..”? yes!

Consider maximume-likelihood (ML) decoding, given error
syndrome s = GG,e mod 2, e = e.

Trivial errors: combination of rows of G, aG.
Degeneracy: e; ~ es iff e; = ey + a7, mod 2.

Non-trivial codewords ¢ % 0: satisfy Z,¢c = 0 mod 2
Degeneracy: need to find error up to degeneracy class.

Net probability: Py(e) = ) Prob(e + aG.)

Choose among competing P.(e) = Py(e + c¢) for all 2"
inequivalent codewords c.

Pirsa: 14070002 Page 24/41



Spin model for the ML decoding threshold
Take Prob(e) = p“ (1 —p)" ", w = wt(e)
Nishimori temperature 7' = 1/13,, e=*"» = p/(1 — p).

Define Ising partition function [Wegner '71]:
Z{)(e. O: nf) = A 'Tl's (,‘X[)(—;"f Zh(—l,)f.b]?[,),
R, =TI, 87", S; ==+l

We have Py(e) = Zy(e, G.: 3 =3,), P.(e) = FPy(e + ¢)

e Correspondence:
— Multi-spin bond per col of &,
— Each non-zero bit of e: flipped bond.
— Decoding transition along the Nishimori line, 5 = 3
— Codeword c: extended post-topological defect

p

Probability to obtain syndrome s = (G.e: P (s Z Pe(

12

Pirsa: 14070002 Page 25/41



Spin model for the ML decoding threshold
Take Prob(e) = p“ (1 — p)" ", w = wt(e)
Nishimori temperature 7' = 1/13,, e=*r = p/(1 — p).

Define Ising partition function [Wegner '71]:
Z{)(e. O: nf) = A 'Tf[,'s (,‘X[)(—;"f Zh(—l,)f.b]?[,),
R, =TI, 87", S; =+l

We have Py(e) = Zy(e, G.: 3 =3,), P.(e) = FPy(e + ¢)

e Correspondence:
— Multi-spin bond per col of &,
— Each non-zero bit of e: flipped bond.
— Decoding transition along the Nishimori line, 5 = 3
— Codeword c: extended post-topological defect

p

Probability to obtain syndrome s = (G.e: P (s Z Pe(

12

Pirsa: 14070002 Page 26/41



Decoding transition
Consider an infinite family of stabilizer LDPC codes with rate
R = k/n and decoding probability "= 1 for p < p, but not

above p..
Do we have a phase transition at p,.”? yes!

Consider maximume-likelihood (ML) decoding, given error
syndrome s = GG,e mod 2, e = e.

Trivial errors: combination of rows of &, aG.,
Degeneracy: e; ~ ey iff ) = e3 + a7, mod 2.

Non-trivial codewords ¢ 2 0: satisfy ,c = 0 mod 2
Degeneracy: need to find error up to degeneracy class.

Net probability: Py(e) = ) Prob(e + aG.)

Choose among competing P.(e) = Py(e + c¢) for all 2"
inequivalent codewords c.
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Spin model for the ML decoding threshold
Take Prob(e) = p“ (1 —p)" ", w = wt(e)
Nishimori temperature 7' = 1/13,, e=*r = p/(1 — p).

Define Ising partition function [Wegner '71]:
Z{)(e. O: nf) = A 'Tl's (,‘X[)(—;"f Zh(—l,)f.b]?[,),
R, =TI, 87", S; =+l

We have Py(e) = Zy(e, G.: 3 =3,), P.(e) = FPy(e + ¢)

e Correspondence:
— Multi-spin bond per col of &,
— Each non-zero bit of e: flipped bond.
— Decoding transition along the Nishimori line, 5 = 3
— Codeword c: extended post-topological defect

p

Probability to obtain syndrome s = (G.e: P (s Z Pe(

12
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Features of the obtained models

e Applicability:
— Mapping works for any stabilizer code
— Could be defined for any error model
— Useful for LDPC codes (Iimited bond size)
e [ypical features
— Non-locality
— No local order p;u';llllvl‘ul'{m}
— Wegner self-duality at p = 0 |= MacWilliams 1dentities|
— Non-degenerate ground state
e Yet if the or1ginal code has a decoding threshold p (), there
1S a phase transition from an “ordered” (decodable) phase at p,
[ small, to a “disordered™ phase at p and/or 1" large
e “Ordered” (defect-free) phase has no extended defects with

probability one as n — oo: (Zp(e)/Ziot(e)) |

©
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Features of the obtained models

e Applicability:
— Mapping works for any stabilizer code
— Could be defined for any error model
— Useful for LDPC codes (Iimited bond size)
e Typical features
— Non-locality
— No local order parameter )
— Wegner self-duality at p = 0 [= MacWilliams identities]
— Non-degenerate ground state
e Yet if the or1ginal code has a decoding threshold p (), there
1S a phase transition from an “ordered” (decodable) phase at p,
['small, to a “disordered™ phase at p and/or 1" large
e “Ordered” (defect-free) phase has no extended defects with

probability one as n — oo: (Zo(e)/Zioi(€)) |

©
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Features of the obtained models
\pplicability:
— Mapping works for any stabilizer code
— Could be defined for any error model
— Useful for LDPC codes (Iimited bond si1ze)
lypical features
— Non-locality
— No local order p;u';un‘cl‘ur@
— Wegner self-duality at p = 0 |= MacWilliams 1dentities|
— Non-degenerate ground state
Yet if the original code has a decoding threshold p. > 0, there
is a phase transition from an “ordered” (decodable) phase at p,
1" small, to a “disordered” phase at p and/or 1" large
“Ordered” (defect-free) phase has no extended defects with
probability one as n — 00: (Zy(e)/Ziot(e)), =1
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Results summary

R](e) o Hl n—00 . .
— — 1 a.s.
Ptnl‘ (e) R] + PC]_ T T Pc'zk—-

Ordered phase:

1

1 P,
Analog of line tension A\ = — <111 o(e) >
de Pe(e) /.

e In ordered phase (A¢)exo = [1' In 2. Transition mechanisms:
- R =10: A\¢ — 0, defect proliferation by vanishing tension.
— R # 0: either A — 0, or*With all \; finite, defect prolifer-
ation driven by the entropy of defect types.
AT
e Nishimori gauge theory of spin glass:
— Energy known exactly along the Nishi- |7 N
mori line (IN).
— Specific heat finite along IN. M
— Multicritical point at py(IN)

— No ordered phase at p > py(IN). Di D
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[ndicator correlation functions
Define the spin correlation functions:

OM(e) = [Zc(e)}_lTi_-SH]?},“" (\XP(__,,:-;(_-L)*bz?,,).

¢'m ( )Qe" (e)
Z(_l) Ztt)l’.(e) ‘

where R, = H S‘ S; ==1 and ©=3aG,

Qtot(e)

o These satisfy |(_2"‘| <1.
e [nvariant underm — m + G, ¢ — ¢ + aG.

Take m = b one of the dual codewords GG.b = 0 [cf. GG,.c = 0]

e Then Q7' (e) = 1 for any codeword c.
e Ifonly one of Z.(e) is dominant, Q{5 = (—1)™

e Use these to identify defect-free phase with dominant ¢ = 0

1 Can we get a simpler expression for Q{5 ”?
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[ndicator correlation functions
Define the spin correlation functions:

OM(e) = [Zc(e)}_lTi_-SH]?},’”’ (fxp(—,:"ﬁ(—l.)'*’]?1,).

¢'m ( ) Q<" (e)
Z(_l) Ztt)l’.(e) ‘

where R, = H S‘ S; ==+1 and ©=0aG.

Qiot(€)

o These satisfy |(2“‘| < 1.
e [nvariant underm — m + ~vG,, ¢ — ¢ + aG.

Take m = b one of the dual codewords GG.b = 0 [cf. GG,.c = 0]

e Then Q(e) = 1 for any codeword c.
e [fonlyone of Z.(e) is dominant, Q{5 = (—1)¢"™

e Use these to identify defect-free phase with dominant ¢ = 0

15
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[ndicator correlation functions
Define the spin correlation functions:

OM(e) = [Zc(e)}_lTi_-SH]?},“"’ (\Xl)(__,,:-a(_l.)fbz?,,).

c'm ( )Qc’ (e)
Z(_l) Zt()l’.(e) ‘

where R, = H S‘ S, ==+1 and ©=0aG.

Qiot(€)

o These satisfy |(_2"‘| < 1.
e [nvariant underm — m +~vG,, ¢ — ¢ + aG.

Take m = b one of the dual codewords GG.b = 0 [cf. G,.c = 0]

e Then Q7' (e) = 1 for any codeword c.
e [fonly one of Z.(e) is dominant, Q{5 = (—1)¢™

e Use these to identify defect-free phase with dominant ¢ = 0

; Can we get a simpler expression for Q{5 ”
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Exact Wegner-style duality

Qo (O =G, 3e) = (—=1)""MQp(O = G, 37 m),

fod ™
[

where tanh 3 = ¢=?" = the indicator functions can be
computed by a MC simulation at a higher temperature...

This 1s potentially doable for LDPC codes, except for the minus

sign problem...
&

o 0O

O 00

etetetetetety | =

foric code [[98, 2, 7]]
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Exact Wegner-style duality

Qo (O =G, Fe) = (=1)""MQp(O = G, 37 m),

fd ™
]

where tanh 3 = ¢=?" = the indicator functions can be
computed by a MC simulation at a higher temperature...

This 1s potentially doable for LDPC codes, except for the minus

sign problem...
V

o0

O 00

et tetete ety | =

Joric code [[98, 2, 7]]
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Exact Wegner-style duality

Qo (O =G, 3e) = (—=1)""MQp(O = G, 37 m),

[t ™
')

where tanh 3 = ¢=?" = the indicator functions can be
computed by a MC simulation at a higher temperature...

This 1s potentially doable for LDPC codes, except for the minus

sign problem...
V

o O

SRS

Celele e orere

Joric code [[98, 2, 7]]
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Exact Wegner-style duality

Qo (O =G, 3e) = (=1)""MQp(O =G, 37 m),

[t ™
')

where tanh 3 = ¢=?" = the indicator functions can be
computed by a MC simulation at a higher temperature...

This 1s potentially doable for LDPC codes, except for the minus

sign problem...
V

o 0O

O 00

L =

Joric code [[98, 2, 7]]
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Exact Wegner-style duality

Qo (O =G, Fe) = (—1)""MQp (O = G, 37 m),

[t ™
)

where tanh 3 = ¢=?" = the indicator functions can be
computed by a MC simulation at a higher temperature...

This 1s potentially doable for LDPC codes, except for the minus

sign problem...
V

g Lattice: rows of (7,
Flip bonds from m

Average product of
bonds from e

Joric code [[98, 2, 7]]
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Summary

LDPC stabilizer codes with limited-weight generators have a finite decoding
threshold (also in FT setting, see next talk)

ML decoding threshold of any stabilizer code corresponds to a multicritical point
in an associated bond-disordered spin model

— These models are interesting in their own right ...

— They also seem to suggest that decoding should not be so hard since defects’

free energies are large. .

A relatively inexpensive Monte-Carloimulation can be used to:

— Establish threshold for a given code family, independent of decoder
- Give an absolute measure of decoder performance

— And (possibly) even help with decoding. ..

Many open questions in theory of quantum LDPC codes, inluding:
[s there a fast general-purpose decoder approaching ML threshold?

Any families of limited-weight stabilizer codes with finite o d/n’?

Any tight bounds on parameters of quantum LDPC codes?

I
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