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Abstract: <span>One of the most basic but intriguing properties of quantum systems is their ability to "tunnel' between configurations which are
classically disconnected. That is, processes which are classically <strong>impossible</strong>, are quantum allowed. In this talk 1 will outline a
new, first-principles approach combining the semiclassical approximation with the concepts of post-selection and weak measurement. Its main
virtue isto provide a real-time description within which sharp answers can be given to questions such as 'how long did the tunneling take' and 'where
was the particle while it was tunneling? Potential applications span a vast range, from laboratory tests to understanding black hole evaporation, the
stability of the electroweak Higgs vacuum and the future of our universe, and the validity (or otherwise) of the "inflationary multiverse"
scenario.</span>
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Outline

- elementary approach to quantum tunneling
using complex classical paths

- vast range of applications, from foundational
questions to quantum chemistry, the Hawking
evaporation of black holes and even the
validity of the ‘inflationary multiverse’
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Classically, tunneling through a barrier
1s not just hard, it’s

Post-selection + the semiclassical expansion

Predictions for real-time weak measurements

Extension to quantum field theory and gravity

Applications from quantum chemistry to black holes

Implications for inflationary ‘multiverse’
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Feynman path integral

(x,.0,,x..1)

B Nijde e" ”'"‘P(x )

Flx,.1,

This incorporates ‘pre- and post-selection’

Now take limit 77— 0

and perform path integral via saddle point method
—> classical solution(s) dominate

Solutions are generically complex

Can introduce weak measuring device to ‘see’ where
the particle was between the 1nitial and final times
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Example: particle in a potential
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Euclidean “bounce” Callan/Coleman 70’s
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Deficiencies of the Euclidean approach:

Dependence on initial state implicit

Cannot easily answer real-time questions
e.g. where was the particle at each moment of
time? How did it get through the barrier?

Hard to extend to time-dependent Hamiltonians
(such as tunneling 1n cosmology)
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Can we do better?

General classical solution described by
two complex numbers:

Energy [ and time delay ¢ 0

For real [, all solutions are periodic and
do not represent tunneling
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.8 E=0=>x(t) ==, t,=imaginary:

sin(ty—t) ?

Small imaginary
part of energy will

“‘carry us across’”
these solutions
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General classical solution expressible in
terms of a Jacobi elliptic function

X(t)=——; E=
1+m SI’I( j/% m ] 2(1+m)

(we shall be interested in small complex
values of f andt,)
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Double periodicity in complex t-plane
[ —t

— . — 0
X(t) N \/7 ( ]’ U= vV I+m
l+m sn i m

K (m) ="quarter period"; K'(m)= K(1—m);
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For small complex energy, 1.e. small m

K=2(1+2..);, K'=—JIn2Z+..

16

. : -nK'K
Expansion in nome g=¢ "

Define U = th(tn —1)

1 2n+l

3, i’qm sin(2n+ 1)U

x(t) =73

1+m Sin U
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[nitial state: gaussian wavepacket

—'\"23 x. 2Lp
W(x,t)oce 4 =L+ :
o L h

For false vacuum “ground state,” [ = /ﬁ

=

Boundary conditions x+ix=0,

for classical solution X=X,
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Assume 1 = t,—t,> 1, x

.>>1:>t0::t.

f /

Solution has small, nearly imaginaryE i.e.. mM=1E

7 —it—3£¢

18 .
Definez=¢" =e *, becomes large for ¢ large, negative

. .3 3T 4T
= x+ix ~—4iz +%Z:>3é/(’ ~48Te ™

General solution € =171 (48iTe™"), neZ,
where W (y) solves xe’ = y (Lambert)

Principal solution has Re(g,) ~ L, Im(g ) ~ =+
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For small complex energy, 1.e. small m

K=2(1+2..), K'==JInZ+

16

PR -nK'/K
Expansion innome g=e¢ " '"; g =2

Define U = th(tn —1)

1 2n+l

DY i]qzm sin(2n+ 1)U

J— T
X(t) o 2K~N1+m SinU
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action i§ = —% Jdt( X' =V (x)) = —iﬁ:jiT—Zz_4

stationarise wrt m, calculate real part of exponent

S y=—242 Im( )T

h ( tot
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-1
‘x+zx‘ , In m — plane

(fort, =0,T =-30)
Each peak represents

a classical solution

Re[ £]> 0 solutions represent
transients due to Gaussian 1nitial state

not being local false vacuum state

Pirsa: 14060051 Page 20/63




-] .
‘x+zx‘ , In m — plane

(fort, =0,T =-30)
Each peak represents

a classical solution

Re[ £]> 0 solutions represent
transients due to Gaussian 1nitial state

not being local false vacuum state

Pirsa: 14060051 Page 21/63




-1
‘x+zx‘ , In m — plane
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a classical solution

Re[ £]> 0 solutions represent
transients due to Gaussian initial state

not being local false vacuum state
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-1
|x+zx‘ , In m — plane

(fort, =0,T =-30)

Each peak represents

a classical solution

Re[ £]> 0 solutions represent
transients due to Gaussian 1nitial state

not being local false vacuum state
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A general technique for deciding which classical
solutions actually contribute to the path integral 1s
needed (in many fields).

There are rigorous results for finite-dimensional
integrals, based on a‘flow equation,” which we
are now extending to the path integral for quantum

mechanics.

Page 25/63




Principal classical
solution
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x(1)

T:t—ti>>1
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Principal classical
solution
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Double periodicity in complex t-plane

a=2KN1+m=n(l+<+m), b=iK'V1+m = —% Log(m)
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Imaginary part of solution
becomes just before tunneling!
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Cubic potential

[ — |2, x > %X
K A

- L/
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!

dimensionless
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General classical solution (Weierstrass)

x(f)= A+—B
m( —f)(m]

@m=D(m=2)(m+1) _ 12 }/n‘ <L l’

9
12 ¥ 732 ’
24[I+m( m—1 )] 2

— 1 o l4m |
B 2(1 J1+m(m=1) ) \/I+m(m 1) 23’{I+m(m—l)
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Even larger Im(x) just before tunneling
due to poles in complex t-plane




Numerical solution of Schrodinger equation

(preliminary)
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Post-selected expectation value of x

complex planc

T T T T T T

(f]x@)i)

(f]4)
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Prefactors: functional determinants

Expand around saddle point solutions

§=8 + J dt(5pr5x) L

and perform Gaussian integrals




Gelfand-Yaglom method

A

O ~

recursion relation for D = det O

1(Py=Dyy Dy =Dy, 2 —
(= )+tw, D, =0

E

= continuum limit
D+w*(t)D=0; D(t)=1,D(t)=i-~

2 mL2

= e.g. usual free particle prefactor
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Can we the complex nature of
classical trajectories?

1.. can we test the reality of reality?
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Couple to measuring device (pointer):

H —H +P%M+ng5(t—tm)

where g << 1.

Pointer momentum P commutes with

Hamiltonian — work in momentum basis

Interaction has this effect:

Y(x Py =e (Pt
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If W for pointer is Gaussian of width L , then
for small g, effect on pointer 1s

<X> > <X>+ gRe(x(tm))
(P)—(P)+-Im(x(t,))

P!t

For gIm(x) < LN this shift in <P> 1s a small

fraction of the quantum uncertainty in P, i.e., L .

Pt

Nevertheless, it can be measured with arbitrary accuracy
1f the state preparation and weak measurement are
repeated a sufficiently large number of times

(Aharonov et al.)
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For a measurement performed a
quarter-period before the particle
tunnels,

A<P>ochekgb‘/"*%ooash%0!

Experimental tests may be possible
in quantum dots




irsa: 14060051

Extensions and generalisations:

vary initial Gaussian: L, X.s P,
vary shape of initial wavepacket
include time-dependent forcing

%
*
%

higher dimensions

quantum field theory
electroweak vacuum stability
black hole evaporation
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* harder: infinite number of degrees of freedom
* 1nitial ‘false vacuum’ wavefunctional

* IMPORTANT: this state defines a preferred frame,
because it 1s not the true, Lorentz-invariant ground state

* A Lorentz-invariant solution (of the Callan-Coleman
type) 1s necessarily time-reversal invariant and
hence the semiclassical solution we seek

* Nonetheless, its spatial profile provides a good ansatz for
the emerging bubble in the large tunneling time limit.
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Bubble Nucleation: Euclidean Approach

Real time

0(3,1) invariant

0O(4) invariant [maginary
time

Euclidean instanton
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Bubble nucleation in flat spacetime
S = Jdtd%(%(@fgb)z - %(ng)z —Lm’¢® + _%/’L(f)

y=mx", ¢p= ﬂfff:> Sy = ﬁ%jdzly(%(vf)h +%f2 _‘L"f})

Real-time ansatz

¢ = % - (mr)x(mt); t =mt

m? ’a -2 2 3
S:?Jcit(éax —2bx" +1cx’)

where a,b,c are various moments of f = § =1.045

E .inst

Suggests this should be an excellent approximation
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At zeroth order, description reduces to
quantum tunneling 1n a cubic potential

Ansatz may be systematically improved

using iterated linear theory response
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The Inflationary ‘Multiverse’




Linde, Linde, Mezhlumian, PRD 50, 2456 (1994)
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Linde, Linde, Mézhlumian, PRD 50, 2456 (1994)

i i v
r“ l;\}{i}‘.‘

| ":1.
|

“Anything that can happen will happen Guth

- and 1t will happen an infinite number of times”
i
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Note: the treatment of quantum effects 1s only
heuristic 1n this and other discussions of the
‘eternal inflationary multiverse’

Bubble nucleation in de Sitter spacetime provides
a minimal setting to explore these questions
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final
hypersurface

bubble

nucleation

initial
hypersurface

S
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final bubble

hypersurface nucleation

initial
hypersurface
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final bubble

hypersurface nucleation

initial
hypersurface
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[f, instead, the initial hypersurface 1s chosen ‘at the
throat’ and we try to describe a bubble which nucleates
much later, then damping of field oscillations due to the
exponential expansion of the universe has a big effect,
countering the classical instability due to nonlinearity.

[t seems that no complex classical solution of the
desired form exists.
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The above discussion suggests that the global
description of an ‘inflationary multiverse’ 1s
with the semiclassical approximation

describing the nucleation of a bubble long after the
initial hypersurface.

This may be a reflection of the fact that the semi-

classical Gibbons-Hawking calculation of the entropy
of de Sitter spacetime yields a finite number of states.

[nteresting implications for today’s metastable
Higgs vacuum... and for black holes.
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Thank you!




One can extrapolate from LHC to infer
the vacuum energy at larger Higgs field

h in GeV

102(}.-)

[f there 1s nothing beyond the
Standard Model, our vacuum 1s metastable

irsa: 14060051 Page 62/63




h in GeV

102(}»

quantum
tunneling
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