Title: From the Mathematics of Supersymmetry to the Music of Arnold Schoenberg

Date: Jun 04, 2014 07:00 PM

URL: http://pirsa.org/14060048

Abstract: The concept of supersymmetry, though never observed in nature, has driven a great deal of research in theoretical physics over the past several decades. Much has been learned through this research, but many unresolved questions remain. This presentation will describe how these questions can lead one down a surprising path: toward the dodecaphony of Austrian composer Arnold Schoenberg.

Pirsa: 14060048 Page 1/47

One Theorist's Bucket List

- (a.) Higgs boson(s),
- (b.) Gravity Waves,
- (c.) Super-partner's, and
- (d.) Superstring/M-Theory

Maxwell's Equations and Conservation Law

(Beeper/Cell Phone Equations)

$$\frac{\partial \, \rho}{\partial t} \, + \, \vec{\nabla} \cdot \vec{J} \, = \, 0 \quad .$$

ELECTRIC FIELD OF AN OSCILLATING CHARGE

Maxwell's Equations and Conservation Law

(Beeper/Cell Phone Equations)

$$\frac{\partial \, \rho}{\partial t} \; + \; \vec{\nabla} \cdot \vec{J} \; = \; 0 \quad .$$

ELECTRIC FIELD OF AN OSCILLATING CHARGE

When Dmitri Mendeleev first presented the Periodic Table of Elements, there were 'holes' in it, i.e. elements that were not known at the time he conceived it. The result was an image that is highly asymmetrical.

- 1									
H 1.01	П	111	IV	V	VI	VII			
Li 5.94	Be 9.01	B 10.8	120	N 14.0	16,0	F 19.0			
Na 23.0	Mg 243	AI 27.0	Si 28 1	P 31.0	S 32.1	CI 35.5		VIII	
K 39.1	Ca 401		TI 47.9	50.9	Cr 520	Mn 549	Fe 55.9	Co 58.9	Ni 587
63 5	Zn 65.4			74.9	Se 79.0	Br 79.9			
85.5	Sr 876	88.9	2r 912	Nb 92.9	Mo 95.9		Ru 101	Rh 103	Pd 108
Ag 108	Cd 112	in 115	5n	Sb 122	Te 128	127			
Ce 133	Ba 137	La 139		Ta 181	W 184		Os 194	192	Pt 195
Au 197	Hg 201	Ti 204	Pb 207	Bi 209					
			Th 232		U 238				

Pirsa: 14060048 Page 5/47

The modern Periodic Table, by contrast, is highly symmetrical in its appearance.

Pirsa: 14060048 Page 6/47

The Standard Model (SM)

matter constituents force carriers **FERMIONS** BOSONS spin = 1/2, 3/2, 5/2, ... spin = 0, 1, 2, ... Unified Electroweak spin = 1 Strong (color) spin = 1 Leptons spin = 1/2 Quarks spin = 1/2 Electric Electric GeV/c² charge charge g ve electron neutrino <1×10-8 0.003 2/3 0 photon gluon Wd down e electron 0.000511 -1 0.006 -1/380.4 -1 W+ 80.4 +1 < 0.0002 0 C charm 1.3 2/3 μ neutrino Z⁰ 91.187 0 -1/30.106 -1 S strange 0.1 ν_τ tau neutrino < 0.02 0 175 2/3 1.7771 4.3 -1/3**b** bottom

PROPERTIES OF THE INTERACTIONS

Property	raction	Gravitational	Weak	Electromagnetic	Str	ong
Property		Gravitational	(Electr	oweak)	Fundamental	Residual
Acts on:		Mass – Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note
Particles experiencing:		All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons
Particles mediating:		Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	Mesons
Strength relative to electromag 10	0 ⁻¹⁸ m	10-41	0.8	1	25	Not applicable
for two u quarks at:	×10 ⁻¹⁷ m	10-41	10-4	1	60	to quarks
for two protons in nucleus		10 ⁻³⁶	10 ⁻⁷	1	Not applicable to hadrons	20

Pirsa: 14060048 Page 7/47

The Standard Model (SM)

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,				BOSONS force carriers spin = 0, 1, 2,							
Leptons spin = 1/2			Quar	ks spin	= 1/2	1/2 Unified Electroweak spin = 1		Strong (color) spin = 1			
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge
ν _e electron neutrino	<1×10 ⁻⁸	0	U up	0.003	2/3	γ photon	0	0	g gluon	0	0
e electron	0.000511	-1	d down	0.006	-1/3	W-	80.4	-1			
$ u_{\mu}$ muon neutrino	<0.0002	0	C charm	1.3	2/3	W+	80.4	+1			
μ muon	0.106	-1	S strange	0.1	-1/3	Z ⁰	91.187 125	0			
ν _τ tau neutrino	<0.02	0	t top	175	2/3	- 11					
T tau	1.7771	-1	b bottom	4.3	-1/3						

PROPERTIES OF THE INTERACTIONS

Property	raction	Gravitational	Weak	Electromagnetic	Str	ong
Property		Gravitational	(Electr	oweak)	Fundamental	Residual
Acts on:		Mass – Energy	Flavor	Electric Charge	Color Charge	See Residual Strong Interaction Note
Particles experiencing:		All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadrons
Particles mediating:		Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	Mesons
Strength relative to electromag 10	0 ⁻¹⁸ m	10-41	0.8	1	25	Not applicable
for two u quarks at:	×10 ^{−17} m	10-41	10-4	1	60	to quarks
for two protons in nucleus		10 ⁻³⁶	10 ⁻⁷	1	Not applicable to hadrons	20

Pirsa: 14060048 Page 8/47

When all the particles of today's Standard Model are classified according to their spins (bosons or fermions) and matter/energy properties, the image is highly asymmetrical.

Pirsa: 14060048 Page 9/47

Should 'sparticles' or 'superpartners' be later observed in laboratories, once more there would he a high symmetrical table to describe physical reality.

Pirsa: 14060048 Page 10/47

Pirsa: 14060048 Page 11/47

Pirsa: 14060048 Page 12/47

Pirsa: 14060048 Page 13/47

Pirsa: 14060048 Page 15/47

http://www.kaleidoscope.net/greg/math/The%20Adinkramat.html

https://code.google.com/p/adinkramat/

The Adinkramat

COHOMOLOGY.COM

BIBDESK SCRIPTS

THE LINEAR ALGEBRATOR

THE ADINKRAMAT

Have you ever tried to understand off-shell supermultiplets and thought that it might be interesting to describe the component fields and <u>supersymmetry</u> actions in terms of diagrams? If so, you're probably one of my research collaborators, Chuck <u>Doran</u>, Mike <u>Faux</u>, Jim <u>Gates</u>, Tristan <u>Hübsch</u>, or Kevin <u>Iga</u>. <u>Adinkras</u> are graphs which encapsulate representation of d=1, N-extended off-shell supersymmetry. Such representations are used in supersymmetric quantum mechanics, and they also arise as the dimensional reductions of higher dimensional supersymmetric field theories.

The **Adinkramat** is a document-based multi-threaded Mac OS X application for exploring Adinkras, which automatically generates the standard Adinkras, lets you rearrange the vertices, and exports the results as PDF and Encapsulated PostScript.

Download Adinkramat 1.1 (November 14, 2006)

If you have any questions, comments, or suggestions, please e-mail Greg Landweber.

Pirsa: 14060048 Page 18/47

Pirsa: 14060048 Page 19/47

Pirsa: 14060048 Page 22/47

Pirsa: 14060048 Page 24/47

Pirsa: 14060048 Page 29/47

A Beyli pair, (\mathcal{X}, β) is a closed Riemann surface X equipped a Belyi map, $\beta: \mathcal{X} \to CP^1$ that is ramified at most over $\{0, 1, \infty\}$. Adinkras induce an integer-valued Morse function on the Riemann surface which is also a divisor.

$$g = 1 + 2^{N-k-3} (N-4)$$

Pirsa: 14060048 Page 34/47

Pirsa: 14060048 Page 35/47

Pirsa: 14060048 Page 36/47

Pirsa: 14060048 Page 39/47

Pirsa: 14060048 Page 40/47

Pirsa: 14060048 Page 41/47

Feynman on Wheeler

Feynman, Wheeler's student in the 1940s, turned to Thorne, Wheeler's student in the 1960s, and said,

"This guy sounds crazy. What people of your generation don't know is that he has always sounded crazy. But when I was his student, I discovered that if you take one of his crazy ideas and you unwrap the layers of craziness from it one after another like lifting the layers off an onion, at the heart of the idea you will often find a powerful kernel of truth."

SUSY Permutation Quartets Within A Coxeter Algebra

Pirsa: 14060048 Page 43/47

Klein's Vierergruppe Hidden In Four Dimensional SUSY

Pirsa: 14060048 Page 44/47

* *				
	Notation	$S_3 \times \mathcal{V}_4$ Product	$S_3 \times \mathcal{V}_4$ Elements	
			()	
	VM_3	(3)	(12)(34)	
		()V ₄	(13)(24)	
			(14)(23)	
			(12)	
· · · · · · · · · · · · · · · · · · ·	VM_2	$(12)V_4$	(34)	
	V M2	(12) 1/4	(1423)	
			(1324)	
			(13)	
and the second s	VM_1	$(13)V_4$	(24)	
	V 2021	(10) 14	(1432)	
A A CONTRACTOR OF THE CONTRACT			(1234)	
	VM (23) V_4	(14)		
		$(23)V_4$	(23)	
	7 112	(20)74	(1243)	
			(1342)	
, , , , , , , , , , , , , , , , , , ,			(132)	
	TM	(132)V ₄	(234)	
	2 212	(132) 14	(124)	
			(143)	
			(123)	
Y	CM	$(123)V_4$	(243)	
		(), 4	(142)	
			(134)	

Pirsa: 14060048 Page 45/47

Klein four-group

From Wikipedia, the free encyclopedia (Redirected from Vierergruppe)

This article is about the mathematical concept. For the four-person anti-Nazi Resistance groups, see Vierergruppe (German Resistance).

In mathematics, the **Klein four-group** (or just **Klein group** or **Vierergruppe** (English: four-group), often symbolized by the letter **V**) is the group $Z_2 \times Z_2$, the direct product of two copies of the cyclic group of order 2. It was named *Vierergruppe* by Felix Klein in his *Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade* in 1884.

The Klein four-group is the smallest non-cyclic group. It is given by the group presentation

$$V_4 = \langle a, b \mid a^2 = b^2 = (ab)^2 = 1 \rangle.$$

All non-identity elements of the Klein group have order 2. It is abelian, and isomorphic to the dihedral group of order (cardinality) 4. It is also isomorphic to the direct sum $Z_2 \otimes Z_2$, so that it can be represented as the bit strings {00, 01, 10, 11} under bitwise XOR.

The Klein group's Cayley table is given by:

•	1	a	b	ab
1	1	а	b	ab
a	a	1	ab	ь
b	b	ab	1	a
ab	ab	ь	а	1

An elementary construction of the Klein four-group is the multiplicative group { 1, 3, 5, 7 } with the action being multiplication modulo 8. Here a is 3, b is 5, and ab is 3 \times 5 = 15 \equiv 7 (mod 8).

Group theory	
Basic notions	[show]
Finite groups	[show]
Discrete groups · Lattices	[show]
Topological / Lie groups	[show]
Algebraic groups	[show]
	V.T.E

Algebraic structure → Group theory

Twelve-tone technique

From Wikipedia, the free encyclopedia

Twelve-tone technique—also known as dodecaphony, twelve-tone serialism, and (in British usage) twelve-note composition—is a method of musical composition devised by Austrian composer Arnold Schoenberg (1874–1951). The technique is a means of ensuring that all 12 notes of the chromatic scale are sounded as often as one another in a piece of music while preventing the emphasis of any one note^[3] through the use of tone rows, orderings of the 12 pitch classes. All 12 notes are thus given more or less equal importance, and the music avoids being in a key. The technique was influential on composers in the mid-20th century.

Schoenberg himself described the system as a "Method of composing with twelve tones which are related only with one another".^[4] It is commonly considered a form of serialism.

Schoenberg's countryman and contemporary Josef Matthias Hauer also developed a similar system using unordered hexachords or *tropes*—but with no connection to Schoenberg's twelve-tone technique. Other composers have created systematic use of the chromatic scale, but Schoenberg's method is considered to be historically and aesthetically most significant.^[5]

Schoenberg, inventor of twelve-tone technique

Contents [hide]

- 1 History of use
- 2 Tone row
 - 2.1 Example
 - 2.2 Application in composition
 - 2.3 Properties of transformations
 - 2.4 Derivation
 - 2.4.1 Combinatoriality
 - 2.4.2 Invariance
 - 2.5 Cross partition
 - 2.5.1 See also
 - 2.6 Other

Pirsa: 14060048 Page 47/47