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Abstract: <span>In scalar-tensor gravity, black holes do not obey the Jebsen-Birkhoff theorem. Non-isolated black holes can be highly dynamical
and the teleological concept of event horizon is replaced by the apparent or trapping horizon. Dynamica solutions describing inhomogeneities

embedded in cosmological "backgrounds' and the phenomenology of their apparent horizons, which often appear/vanish in pairs, will be described.
Isolated black holes, in contrast, have no hair and are the same as in general relativity.</span>
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MOTIVATION

Horizon = “a frontier between things observable and things
unobservable” (Rindler '56). The horizon, the product of strong
gravity, is the most impressive feature of a BH spacetime.
“Textbook” kinds of horizons: Rindler horizons, BH horizons,
cosmological horizons; also event, Killing, inner, outer, Cauchy,
apparent, trapping, quasi-local, isolated, dynamical, and slowly
evolving horizons (Poisson; Wald; Booth; Nielsen; Ashtekar & Krishnan
'04; Gourghoulhon & Jaramillo '08). Some horizon notions coincide
for stationary BHs.

The (now classic) black hole mechanics and thermodynamics
(1970s) focus on stationary BHs and event horizons but highly
dynamical situations are of even greater interest:

@ Gravitational collapse.

@ Merger BH/compact object.

@ Hawking radiation and evaporation of a small BH.

@ BHs interacting with non-trivial environments
(accretion/emission, backreaction).
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VARIOUS NOTIONS OF HORIZON

Basic notions: congruence of null geodesics (tangent

/12 = dx2/d\, affine parameter \): 512 = I°V /2 = 0. Metric hgp
in the 2-space orthogonal to /2: pick another null vector field n?
such that /°n, = —1, then

hRap = Gap + lanp + IpbNa.

hap purely spatial, h9, is a projection operator on the 2-space
orthogonal to /2. The choice of n9 is not unique but the
geometric quantities of interest do not depend on it once /2 is
fixed. Let n? = geodesic deviation, define Bgy, = Vi /3,
orthogonal to the null geodesics. The transverse part of the
deviation vector is

T,a = h9, "7b — 773 + (ncnc)la

and the orthogonal component of /I°V 2 is

(I°Vcn?) = habhchbc ﬁd = éad ﬁd .
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do 62 2 2 a|b
ﬁ—ﬁ:Q—E—O’ —+ w —F?abll.
A compact and orientable surface has two independent
directions orthogonal to it: ingoing and outgoing null geodesics

with tangents /2 and n9. Basic definitions for closed 2-surfaces:
@ A normal surface corresponds to ¢, > 0 and 6, < O.

@ A trapped surface has 6; < 0 and 6, < 0. Both outgoing
and ingoing null rays converge here, outward-propagating
light is dragged back by strong gravity.

@ A marginally outer trapped (or marginal) surface (MOTS)
corresponds to 6, = 0 (where /2 is the outgoing null normal
to the surface) and 6, < O.

@ An untrapped surface is one with 6,0, < O.
@ An antitrapped surface corresponds to ¢; > 0 and 6, > 0.

@ A marginally outer trapped tube (MOTT) is a 3-D surface
which can be foliated entirely by marginally outer trapped
(2-D) surfaces.
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horizon is a Killing horizon for the Killing vector

k3 = (8/01) + Qp (9/9)?

linear combination of the time and rotational symmetry vectors,
Q= angular velocity at the horizon (this statement requires
the assumption that the Einstein-Maxwell equations hold and
some assumption on the matter stress-energy tensor).
Attempts to use conformal Killing horizons have not been
fruitful.

Apparent horizons (AHs)

A future apparent horizon is the closure of a 3-surface which is
foliated by marginal surfaces; defined by the conditions on the
time slicings (Hayward '93)

9)':0)
On < O,

where 0, and 6, are the expansions of the future-directed
outgoing and ingoing null geodesic congruences, respectively
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that on its 2-D “time slicings” (Hayward '93)

& =0,
0, < 0,
[:ngf:naVagl <Oa

Last condition distinguishes between inner and outer Hs and
between AHs and trapping Hs (sign distinguishes between
future and past horizons).

Past inner trapping horizon (PITH). exchange /2 with n? and

reverse signs in the inequalities,

91’7:0,
6, > 0,
L[gn — IaVaen > 0.

The PITH identifies a white hole or a cosmological horizon. As
one moves just inside an outer trapping horizon, one
encounters trapped surfaces, while trapped surfaces are
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In spherical symmetry, the Kodama vector mimics the
properties of a Killing vector and originates a (miracolously)
conserved current and a surface gravity.

Defined only for spherically symmetric spacetimes. Let the
metric be

ds? = hapdx?dx® + RPdQY, ,

where a, b = 0,1 and R is the areal radius and
dQ(22) — dB?2 + sin® 6 dyp?. Let ez, =volume form of hap; the
Kodama vector is

Ka8 = —e3V,R.

K2 lies in the 2-D (t, R) surface. In a static spacetime the
Kodama vector is parallel (not equal) to the timelike Killing
vector. When timelike, the Kodama vector defines a class of
preferred observers (it is timelike in asymptotically flat regions).
Divergence-free, VK2 = 0, so the Kodama energy current

J2 = G2 K, is covariantly conserved, VaJ,; = 0 even if there is
no timelike Killing vector (“Kodama miracle”).
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The Noether charge associated with the Kodama conserved
current is the Misner-Sharp-Hernandez energy.

Spherical symmetry

Misner-Sharp-Hernandez mass defined in GR and for spherical
symmetry, coincides with the Hawking-Hayward quasi-local
mass (Hawking '68; Hayward '94). Use areal radius A, write

ds? = hapdx?dx® + RPdQ%,, (a,b=1,2). (1)
then oM
1 — ? = VCR VCR

Formalism of Nielsen and Visser '06, general spherical metric is

- 2M(t, R) dR?
2 2¢(t,R ’ 2 2
ds? — —e—2¢(1,A) [1 - = ] at? + | 2M(LA) + R?dQ%,,

where M(t, R) a posteriori is the Misner-Sharp-Hernandez

mass. Recast in Painlevé-Gullstrand coordinates as
—2¢ —a
> e B 2M s 2e /2M > > >
asc = 5 ODY2 1 " adr +c‘37-/6t =) drdR+dR“+R dQ(z)

Valerio Faraoni

Pirsa: 14060043 Page 10/39



with g.,/2n? = —2. Expansions are

2 2M
9n ==*5 (1 F ?)

A sphere of radius R is trapped if R < 2M, marginal if R = 2M,
untrapped if R > 2M. AHs located by

2M (7, Ran) =1 <= V°RVR |4y =0 gff lan =0,
Ran(T)

Inverse metric is

1
(") = =
B 0 0 1 0
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COSMOLOGICAL BHs IN SCALAR-TENSOR AND 7f(R)
GRAVITY

or A COSMOLOGICAL BESTIARY

- P >
;H-:.?-”‘lr.d. ‘s

Valerio Faraoni

Pirsa: 14060043 Page 13/39



The Husain-Martinez-Nunez solution of GR
HMN '94 new phenomenology of AHs. This spacetime describes

an inhomogeneity in a spatially flat FLRW “background”
sourced by a free, minimally coupled, scalar field.

ar?

(-

ds® = (Aon + Bo) [— (1 - ? dn® +

-1 0k R
2 2
+r (1 _—— dSZ(Q):| ,

1 2C\*/V3
d(n,r) = *ay= " [D (1 - (Aon + Bo)‘/s] :

where Ag, Bp, C, D > 0 constants, o = +v/3/2, n > 0. The
additive constant By becomes irrelevant and can be dropped
whenever Ag # 0. When Ag = 0, the HMN metric degenerates
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into the static Fisher spacetime (Fisher '48)

ar?
vv(r)

ds® = —V¥(r)dn® + + r2V1r(r)dQy,

where V(r) =1 —2u/r, p and v are parameters, and the Fisher
scalar field is

Y(r) = yoln V(r).

(a.k.a. Janis-Newman-Winicour-Wyman solution, rediscovered
many times, naked singularity at r = 2C, asympt. flat). The
general HMN metric is conformal to the Fisher metric with conf.
factor 2 = /Aon + Bp equal to the scale factor of the
“background” FLRW space and with only two possible values of
the parameter v. Set By = 0. Metric is asympt. FLRW for

r - +oo and is FLRW if C = 0 (in which case the constant Ag
can be eliminated by rescaling n).

Valerio Faraoni

Pirsa: 14060043 Page 15/39



Ricci scalar is
a—2
202C? (1 — 29) 342
3!’4A0’r] 2 (AO"?)S (1 C)

spacetime singularity at r = 2C (for both values of «). ¢ also
diverges there, Big Bang singularity at n = 0. 2C < r < +o0
and r = 2C corresponds to zero areal radius

R(n, r) = \/Aon r (1 _2C)

Use comoving time ¢, then

2/Ao 3 2/3
t:/dna(n)=Ton3/2v U=(2mt ’ a(t)zaot1/33

HMN solution in comoving time reads

RA, = 87V°HpV e =

2

% 2
- (1 — =) dt?+3° ar g + r° (1 - 2¢ dQ
1—2C r

Valerio Faraoni

Pirsa: 14060043 Page 16/39



/3
H(t, r) = :tﬁ In [D (1 — ? a2‘/3(t)] .

Areal radius R(t, r) increases for r > 2C. In terms of R, setting

A(r) = 1 —2—:-3-, B(r)=1— (O‘+r1)c,

we have R(t,r) = a(t)rA‘Ea (r) and a time-radius cross-term is
eliminated by introducing a new 7 with d7 = ;1: (dt + pdR) ,

3(1 o)

HRA
B R) = gaiy— H2Fr2A2(1—a) :

Valerio Faraoni
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then

H? R2 A2(1 =) (r)
2 . A o 2 2
ds< = A%(r) [1 B2(r) F=dt
H2 R2A2—a A1 —a(r) > > >
B2(r) [1 + B2(r) — H2R2A2(1—a)(r)] di” + R~dQz,

AHs located by g™® = 0, or

o2l @rne] (1-29)T

n re

For R — +o0o, reduces to R ~ H~ 1, cosmological AH in FLRW.
Let x = C/r, then the AH eq. is

HR — [1—(0‘+1)C] (1 _26\*

r r

lhs is

a 2C
HR = 2/3
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then

H? R2 A2 =) (r)
2 . A o 2 2
ds< = A%(r) [1 B2(r) F=dt
H? R2 A2« Al (r) 2 | B2g02
B2(r) [1 + B2(r) — H2R2A2(1—a)(r)] dR™ + AdS,

AHs located by g7® = 0, or

L2l @rne] (1-29)7

n re

For R — +oo, reduces to R ~ H~ 1, cosmological AH in FLRW.
Let x = C/r, then the AH eq. is

HR — [1—(0‘+1)C] (1—2—0 -

r r

lhs is

a 2C
HR = 2/3
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then

o HERA A=) (r)
g = -A (r)[ -— (Tr)"“] Fedi®
HR AR A'=0(r) ;
Y [ ﬁ(r)-mhiiﬂi'i?)(?)] ot + RdRy

AHs located by g™ = 0, or

-2 -0e] 120

For A = +ec, reduces to A = H~', cosmological AH in FLRW.
Let x = C/r, then the AH eq. Is

e -te22e] 20
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rhsis [1 — (a+ 1)x] (1 — 2x)>~ ! and

B 2Cap (1 — 2x)3(1—<) RS
Hx) = { 3 x[1—(a—|—1)x]} ’
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If « = v/3/2, between the Big Bang and a critical time t, there
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The conformal cousin of the HMN solution

Solution of BD gravity found by Cilifton, Mota, and Barrow '05 by
conformally transforming the HMN solution,

dsz2 = —a*(~5)(r) ar?
2(8—+3)

+A—a(1+¢3a,a)(r) t 35—/3 [dr2 + r2A(r)dQ(22)] ,

1 ——
Az2E(r)tvss— |

o(t, r)
where

A(r):1—£, B=V2w+3, w>-—-3/2.
r

Singularitiesatr=2Cand t =0 (2C < r < +occ and t > 0).
The scale factor is
B—3
a(t) = t3s—v3 = 7. (5)
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Interpreted in VF & A. Zambrano Moreno '12. Rewrite as
ds® = —A7(r) dt® + A®(r) & (t)dr® + R?(t,r)dQ%, ,
where

1 1

R(t,r) = A% (r)a(t) r
Study the area c_())f the 2-spheres of symmetry:
OR/Or = a(t)A"z (r)(1 — ro/r) where

and

h=(1—0)C, Ryt)= (2]

has the limit
ra(t)
1 — 2C

r
Valerio Faraoni
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Critical value rp lies in the physical region rp > 2C if © < —1.
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241
dR—A 2 (r)a(t)rdt

AHs: use dr = — , turn line element into
Az at) S L A%F () a(t)
> (DWA? —H?R?) . 2HR adR? 2 42
asc = D, at D, dtdR + D, + R dQ(z)
Inverse metric is
(—& - oo\
HR D1A" HERE
. — A ( Ac ) o Y
(g"") =
0 0 R 2 0
\. O 0 0 AR 2sin2¢ )

AHs located by gff = 0, or Dy(r)A(r) = H2(t)R?(t, r). There
are solutions which describe apparent horizons with the
“S-curve” phenomenology of the HMN solution of GR. AH eq.
satisfied also if the rhs is time-independent, H = ~/t = 0,
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241
dR—A 2 (r)a(t)rdt

AHs: use dr = — , turn line element into
ATz a(t) €€+ +ATE (1) a(t)
2 o (D1 AO' - H2R2) 2 . 2HR dR2 2 2
adsc = D, dt D, dtdR + D, + R dQ(z)
Inverse metric is
(=& ® o0
HR D1A" HEFI)‘?
. — A ( A ) o Y
(") =
0 0 R 2 0
\. O 0 0 AR 2sin2¢9 )
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Valerio Faraoni

Pirsa: 14060043

Page 26/39



has form

ds? = _Ab+1(r)dt2+A--——-—a+1(r) “Aa(r)

d(r) = @Az (r),

with ¢g > 0, a, b constants,
w(a,b) = -2 (& +b*>—ab+a+b)(a—b) 2.

Reproduced by setting (a, b) = (4¢ — 1,22 — 1), then
w (% —1,22 —1) =0 for @ = ++/3/2. The nature of the CL
spacetime depends on sign(a) (choice a = ++/3/2 (vanzo,
Zerbini, VF '12). Fora> 0 +> a = +/3/2,a ~ 0.1547, and

© = —% ~ —1.1547 < —1 CL contains a wormhole throat
which coincides with an AH at b, = 2C (13°2) > 2C.
Fora<0<«+>a=—/3/2,a~ —2.1547, and © ~ 1.1547 > 0,
there are no AHs and CL contains a naked singularity.
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p(t, 0) = pl™ (a(t)) A-20

Matter source is a perfect fluid with P("™) = (v — 1) p(™) with

~v =const. m, «, ¢g, ao,pg ) , Ip are > 0. Areal radius is

— a(t)g (1 + 20:9) A1 (a—1)(a+2) _ a(t)'i.A;(a—1)(a+2)

Require that wo > 3/2 and B = 0. Interpreted in VF, Vitagliano,
Sotiriou, Liberati ‘12, solve g™ — 0 numerically. According to the parameter
values, several behaviours are possible. The “S-curve” familiar from the HMN
solution is reproduced in a certain region of the parameter space, but
different behaviours appear for other combinations of the parameters. In
certain regions of the parameter space, CMB contains a naked singularity
created with the universe. In other regions of the parameter space, pairs of
black hole and cosmological apparent horizons appear and bifurcate, or
merge and disappear. Larger parameter space involved, CMB class exhibits
most varied and richer phenomer @y 7 fHs seen (some new one).
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Other solutions

Few other solutions known in BD theory Sakai & Barrow,
Einstein-Gauss-Bonnet gravity Nozawa & Maeda '08, higher order gravity
Charmousis, Lovelock gravity Maeda, Willison, Ray '11
(Einstein-Gauss-Bonnet and Lovelock appropriate in D > 4, bestiary then
includes Myers-Perry BHs, black strings, black rings, black Saturns, etc.).
Add stringy/supergravity BHs.

Misner-Sharp-Hernandez mass and Kodama vector defined in GR and
Einstein-Gauss-Bonnet gravity (perhaps in FLRW in f(R) gravity)
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[T.P. Sotiriou & VF PRL 2012]

@ In GR spacetime singularities are generic (Hawking & Penrose) and
they are usually cloacked by horizons (Cosmic Censorship).

@ GR: stationary black holes (endpoint of grav. collapse) must be

axisymmetric (Hawking '72). Asympt. flat black holes in GR are simple.

@ Non-asympt. flat black holes can be very complicated: “cosmological”
black holes have appearing/disappearing apparent horizons (McVittie,
generalized McVittie, LTB, Husain-Martinez-Nunez, Fonarey, ...).
Interaction between black hole and cosmic “background”.

@ Scalar-tensor, f(R) gravity, higher order gravity, low-energy effective
actions for quantum gravity, etc.: Birkhoff’'s theorem is lost.
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Prototype: Brans-Dicke theory (Jordan frame)
Sep = f d4X\/—g |:‘19iii - L:feuﬁaﬁu‘to + Lm(Guv, 'd))]

@ Hawking '72: endpoint of axisymmetric collapse in this theory must be
GR black holes. Result generalized for spherical symmetry only by
Bekenstein + Mayo '96, Bekenstein '96, + bits and pieces of proofs.

@ What about more general theories?

Valerio Faraoni
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A SIMPLE PROOF

This work (T.P. Sotiriou & VF 2012, Phys. Rev. Lett. 108, 081103): extend
result to general scalar-tensor theory

Ssr = [ d*xv/=5[wR - (‘*”)v“ww — V(@) + L Gurr )]

(this action includes metric and Palatini f( R) gravity). We require

@ asymptotic flatness (collapse on scales << H; '): ¢ — o as
r — +oo, V(eo) =0, o V'(v0)=2V(po)

@ stationarity (endpoint of collapse).
Use Einstein frame .. — gu. = © Guv, ¥ — ¢ with

_ J2w(p) +3 dy
ap= |2 E3 de (4 _g2)

brings the action to
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A 1 ~
Ssr= [ d*xv/=0[gx — 3V Vit — U®) + Ln(@us v)]
where U(¢) = V(¢)/¢?. Field egs. are

~

1. w A A 1. o A
Ruv — 3R9u. = i,f) (Vusovuso — 59uv V’“sovmo)
1 re e A V(e) A
+ (V¥ — 8..00) 20 Guv
Rw+3)0p = —wW' VVap+eV —2V,
Q = Q(¢) —> same symmetries as in the J. frame:

e £H timelike Killing vector (stationarity)
e (" spacelike at spatial infinity (axial symmetry).
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multiply Cl¢p = U’(¢) by U’, integrate over vV ——

fvd“x\/—gU’(qb)chzfvd“x\/ﬂgU’E(qb)

rewrite as
| o x/=g (U (£)V* 69,6 + U*(9)
- fw P x+/[h U ()" b

where n* —=normal to the boundary, h —=determinant of the induced metric
h,.. on this boundary. Split the boundary into its

constituents [, = 151 +jS2 + Jrorizon + Jr— o NOW, fs, = - fsz' Jreoo =0,
Shorizon @ X/ 1H| U'(¢)n*V ¢ = O because of the symmetries.

7 fv d*x\/—g [U"($)V* ¢V, + U?(¢)] = 0.

Since U’? > 0, V*¢ (orthogonal to both £#, ¢* on H) is spacelike or zero, and
U (¢) = 0 for stability (black hole is the endpoint of collapse!), it must be
V.p =0inV and U'(¢p) = 0. For ¢ =const., theory reduces to GR, black
holes must be Kerr.

@ Metric f(R) gravity is a special case of BD theory with w = 0 and V # 0.
Valerio Faraoni
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multiply Og = U'(#) by U, Integrate over V —

fd"x\/—_gt!(a .¢nfd‘x,/liu'{o)
v v

rawrite as
j d'x\ /=g (U ($) V"6V, 4 U*(g)]
v

- f LV U ()" 9,6
ay

whare n* =normal to the boundary, h =daterminant of the Induced metric
hiw o0 this boundary, Spilt tha boundary Into Its

constituents [, = [, 4 fs. + Joarton 1 [rmos NOW, [, = = -r:r,' Jinm =0,
Jronann @ %/11] U (8) V7,06 = 0 bacausa of the symmetries.

= Ld‘x-a (U"(6)9*6¥,8 + ()] = 0
Since U® > 0, 9" (orthoganal 1o bath £, ¢* on H) is spacelika or 20r0, and
U"() 2 0 for stability (black hola (s the endpoint of collapsal), It must be
Vb m0in V and U'(dg) = 0, For ¢ =const., theory reduces 1o GR, black
holes must be Karr

9 Matric 1(R) gravily Is a speclal case ol 3D theory with w = 0
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@ forw = —3/2, vacuum theory reduces to GR, Hawking’s theorem

applies (Palatini f(R) gravity is a special BD theory with w = —3/2 and
V # 0).

Exceptions not covered by our proof:

@ theories in which w — oo somewhere

@ theories in which ¢ diverges (at oo or on the horizon)
ex: maverick solution of Bocharova et al. '80 (unstable).

@ Proof extends immediately to electrovacuum/conformal matter (7 = 0).
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CONCLUSIONS AND OPEN PROBLEMS

Rich bestiary (phenomenology and dynamics) of evolving horizons.

Are AHs/trapping horizons the “right’ quantities for thermodynamics? Is
their thermodynamics meaningful? Is the Kodama prescription correct?
(conflicting views)

An adiabatic approximation should be meaningful. Do fast-evolving
horizons require non-equilibrium thermodynamics?

Even though Birkhoff’s theorem is lost, black holes which are the
endpoint of axisymmetric gravitational collapse (and asympt. flat) in
general scalar-tensor gravity are the same as in GR (/.e.,
Kerr-Newman). Proof extends to electrovacuum.

Exceptions (exact solutions) are unphysical or unstable solutions which
cannot be the endpoint of collapse, or do not satisfy the Weak/Null
Energy Condition.

Asymptotic flathness is a technical assumption, but can’t eliminate it at
the moment. Excludes “large” primordial black holes in a “small”
universe.

What about more general theories with other degrees of freedom?
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