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Abstract: <span>More often than not, astrophysical probes are superior to direct laboratory tests when considering light, very weekly interacting
particles and it takes clever strategies and/or ultra-pure experimental setups for direct tests to be competitive. In this talk, | will review the
astrophysical side of the story with a particular focus on dark photons and axion-like particles. | will also present some recent results on the emission
process of dark photons with mass below 10 keV from the interior of stars. Compared to previous analyses, limits on dark photons are significantly
improved, to the extent that many dedicated experimental searches find themselves inside astrophysically excluded regions. However, constraints on
the atomic ionization rate from a solar flux imposed by Dark Matter experiments offer a new test of such states, surpassing even the most stringent
astrophysical limits. The model also serves as a prototype scenario for energy injection in the early Universe and | will show how cosmology offers
unique sensitivity when laboratory probes are out of reach. Time permitting, | may aso briefly comment on very light axions and their
cosmol ogy.</span>
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Millicharged particles
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Axion-like particles
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A QCD axions
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QCD axions
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Plan

|. Review of astrophysical probes of light, weakly interacting states

2. Dark Photons

* more recent progress on stellar emission and laboratory detection

H.An, M. Pospeloyv, |P, PLB+PRL 2013

* cosmological constraints from light element observations

A. Fradette, M. Pospelov, P, A. Ritz (in preparation)

ests of Fundamental Physics, Perimeter Institute, June 16-19, 2014 Josef P
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New light degrees of freedom can interfere in...

Object-based astronomy

|- Photons and neutrinos from sources are affected during their propagation
=> photon-axion conversion, neutrino oscillations

2. Decay products of particles from distant sources
=> gamma/X-rays

3. Emission of light, weakly interacting particles leads to energy loss in stars

Cosmology

CMB, Structure formation, BBN. modifications of gravity. .,
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Stars as laboratories

. S |-
Virial theorem: (Exin) = —5(Egrav)
(imagine, the star forms 3 | GMgm,
from an initially dispersed gl D) Re

cloud)

core temperature of

=> T = 0(keV)
solar mass star

=> Particles with mass < O(keV) are kinetically accessible
and can be produced
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Stars as laboratories

If interaction is “strong”, they can be trapped, just like photons

=> such particles are not necessarily harmless, as they contribute to
radiative energy transfer

=> mean free path must be shorter than for photons, and
therefore likely challenged by laboratory experiments

If interaction is “weak”, they can escape, just like neutrinos
=>if their interaction-rate is much we

aker than neutrinos, then
typically harmless

Impact on stars often maximized when new

barticle’s mean free path is of
order the geometric dimensio

n of the system,
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Two ways to react to energy loss
Eiin + Egrav)

Stars supported by radiation pressure (active stars):

Virial theorem: i,

=> Gravitational potential energy becomes more negative (tighter bound)

=> average kinetic energy increases, star becomes hotter,
negative heat capacity

2.Stars supported by degeneracy pressure (white dwarfs, neutron stars):

possess positive heat capacity, the star actually cools by the energy loss
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Stars as laboratories
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Stars as laboratories
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Red Giants

Helium core degenerate ' - 4 Red Giant

p 10" gem™ T~10"K

Observable:

Luminosity determined by the core
mass (unlike for normal stars) and

brightness at RGB tip agrees with
predictions to 5%

Limit: energy loss delays He-flash, le

V1,
ading to larger core masses,
and one requires ¢ < 10ergp=! !

S
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Horizontal Branch (HB) stars

H
HB helium burning core

px10'gem™ T4 08 I

Energy loss leads to increased rate 30 — '2(¢
and shortens the helium burning lifetime

Horizontal Branch
Observable:

Predicted number of stars on

HB vs on the RGB in Globular Clusters
(which are all of the same age

) agrees within 10% with observations

Lirmit: luminosity into new states should not exceed nuclear
energy generation rate L, < 0.1Ly,, , which aganis € < 10ergge ! ¢!

S& 8
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Cooling of white dwarfs

White dwarfs cool via surface photon emission and

neutrino volume emission, and are supported by electron degeneracy pressure

Observable: (bright) (faint)
WD luminosity function

(also: period decrease of variable dwarfs)

Various temperature dependences
of the new cooling mechanism lead to

suppression of amplitude (if emission
similar to photon luminosity)

‘I|huL
altered slope or a dip at the hot end of the  young WD)
luminosity function
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Example
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Example

Pseudoscalar Ly = 1gd1), 51,
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The Axion Landscape
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The Axion Landscape
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The Dark Photon Landscape
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Model parameters

Dark Photons as example
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Dark Photons as example
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Transverse vs. longitudinal modes

Transverse modes:

3 I
Rate gy o\ CL <
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Longitudinal modes (Stueckelberg case)
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Solar production - revisited

® Formy < 1keV hidden photons are produced in the solar interior
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Stellar energy loss - revised
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