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Introduction

Introduction

@ CFTs describe second order phase transitions.
@ CFTs appear at the end points of RG flows.
@ CFTs can secretly describe quantum gravity in AdS space.

For these and other reasons, they are omnipresent in many areas of
physics, including high energy physics.

Zohar Komargodski Convexity and Liberation at Large Spin

Pirsa: 14050137 Page 3/43



Introduction

Introduction

Many CFTs have a useful weak coupling parameter, for example,
@ O(N) critical model at large N and similar theories with
CS-terms.
@ Banks-Zaks-like fixed points.
e QED3 with many charged fermions.

@ Wilson-Fisher fixed points.

e Theories with exactly marginal couplings, e.g. N = 4 at weak
coupling.
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Introduction

Introduction

Some of the most interesting systems don't have any known useful
weak coupling expansion

@ Many second order phase transition points, such as the 3d
Ising model etc.
o QED3; with a small number of fermions.

@ Many theories that appear in theoretical high energy physics,
for instance, lots of 4d SCFTs, d > 4 CFTs, theories that
appear in AdS/CFT etc.
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Introduction

Introduction

CFTs in 2d enjoy an infinite symmetry group and some of them are
completely solvable. However, no nontrivial d > 2 theory with
finite two-point function for the stress tensor has been solved.
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Introduction

Introduction

CFTs are implicitly determined by the constraint of associativity of
the operator algebra (bootstrap equations)

These infinite sums have overlapping regions of convergence and
the equations are mathematically well defined. However, solving
these equations is a formidable task.
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Introduction

Introduction

So in general we have a dreadful set of equations describing a
theory without any manifest expansion parameter.

Our main point in this talk is that there is an expansion parameter
in any CFT. It is the inverse spin, 1/s.

Zohar Komargodski Convexity and Liberation at Large Spin

Pirsa: 14050137 Page 8/43



Introduction

Introduction

In a sense that we will make precise, we can perform perturbation
theory in 1/s in *any* CFT to obtain various analytic results.

These results are in principle testable both experimentally and with
numeric mehods.
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An Additivity Theorem

An Unphysical Toy Model

We start with a well-known unphysical solution to the bootstrap
equations. It is called generalized free fields. This will be our
“harmonic oscillator.”

We have an operator ®(x) of dimension A and declare that all the

correlation functions are given by Wick contractions using the
two-point function

In particular
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An Additivity Theorem

An Unphysical Toy Model

From this four point function

(@I = 35—+ gamy 8+ yeAr — o7

we can read out the spectrum of the theory. It contains the
following operators

(1.6, &0 0"
with dimensions
{0,A,2A + s + 2n}

We see that unless A = d/2 — 1 the theory does not contain the
energy-momentum operator hence it does not correspond to a
physical model. The case of A = d/2 — 1 is free field theory
(Landau-Ginzburg).
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An Additivity Theorem

An Unphysical Toy Model

Using the operators {d)(ﬁSE]”(D} one can write an explicit partial
wave decomposition of the four point function. It depends on the
dimensions of the intermediate operators, i.e. {0.2A + s + 2n}
and their OPE coefficients, c. ,.

These OPE coefficients are known exactly, but we will not need to
quote them here.
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An Additivity Theorem

An Additivity Theorem

Define the twist of an operator by

T=A—s5s

if the twists 7; and 7 are present in the spectrum then we
necessarily have operators with twists arbitrarily close to 71 + ™

We refer to this property as “additivity.” The proof assumes

e Unitarity
o d>2
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An Additivity Theorem

An Additivity Theorem

L ]
$ 0 s g0000

log(s)

This kind of spectrum is very different from d = 2, where we have
minimal models, and the spectrum consists of a finite number of
twists spaced by integers.
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An Additivity Theorem

An Additivity Theorem

Consider the OPE of some operators O1(x) and O(0)

01(x)02(0) = ¥~ £7(x)0!(0)

where s is the spin and i is some index that counts operators with
the same spin.

The claim is that for large enough s there must always be
operators in the OPE with twists arbitrarily close to 71 + ™

In this sense, at large s every theory approaches the theory of
generalized free fields, where the twist is exactly additive. We can

—
thus always talk about the operators ® 9 *1"=%® for large enough
S.
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An Additivity Theorem

An Additivity Theorem

Additionally, the OPE coefficients of the operators that approach
1 + 12 approach the OPE coefficients of the corresponding
generalized free fields operators ¢s ,—o.

One can also study the “daughter trajectories’ corresponding to
operators with twists 7y + 7 + 2n. For fixed n and large enough s,
they approach the naive dimensions and OPE coefficients of the
operators ® O *[1"®. For simplicity, we'll discuss only the main
trajectory n = 0.

The story for n.s that scale simultaneously to infinity is
presumably also of interest, but it is currently not fully developed
(see [Cornalba, Costa, Penedones| for connection to the AdS
eikonal limit).
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An Additivity Theorem

An Additivity Theorem

Rather than to outline the proof, | will now explain how this result
can be used as the starting point of a controllable perturbative
expansion in any CFT4.5.

Note that this additivity theorem is reminiscent of a result by
Callan-Gross, who showed that in weakly coupled models
consisting of fermions and scalars only, the dimensions of certain
operators with large spin get only weakly renormalized.
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Perturbation Theory Around s — oo

Perturbation Theory Around s — oo

Reconsider the typical structure of the spectrum

log(s)
which we claim becomes “generalized free” as s — oo. We should

be able to determine 7(s) — 7, — 7 for large s in perturbation
theory.
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Perturbation Theory Around s — oo

Perturbation Theory Around s — oo

Indeed, since as we claim this is a free limit the bootstrap equations
can be studied systematically and we find the following result

: C

lim [T(S) —T = Tg] = ——

5—0C e
where 7, is the smallest twist operator in the theory after the unit
operator. (In many theories that would be the stress tensor, thus,
T =d—2).
That the correction around s = oc is controlled by 7, was observed
in many large N examples in the context of AdS/CFT and it was

emphasized in [Alday, Maldacena].
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Perturbation Theory Around s — oo

Perturbation Theory Around s — oo

lim [7(s) =71 — 2] = — ‘i

S—0C S’
With our tools we can compute ¢ exactly. For simplicity we display

the result for the case that 7, = d — 2 coming from the stress
tensor and we assume O; = O3 with dimension denoted by A

d*r(d +2) A%T(A)°

2c7(d — 1)21 (452)7 1 (A - 952)°

C —

cr is the 2-point function of the stress tensors. Note that ¢ > 0,
hence the spectrum is always asymptotically convex.
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Perturbation Theory Around s — oo

Perturbation Theory Around s — oo

Actually, one can prove that there is some s, starting from which
the spectrum of operators O10° Oy is convex. This is correct in all
d > 2 CFTs. It is harder to prove a general bound on s,. In all
examples we considered we found s, = 2, so we will assume this is
indeed the case.
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Perturbation Theory Around s — oo

Perturbation Theory Around s — oo

Actually, one can prove that there is some s, starting from which
the spectrum of operators O10° Oy is convex. This is correct in all
d > 2 CFTs. It is harder to prove a general bound on s,. In all
examples we considered we found s, = 2, so we will assume this is
indeed the case.
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Applications

AdS/CFT

One of the first computations people did in AdS/CFT was the
computation of the anomalous dimension at strong coupling of the

— .
operator £ J °L where L is the N' = 4 Lagrangian. This
corresponds to computing dilaton scattering diagrams in AdSs.

One finds after computing all the relevant Witten diagrams:

96 1
TFe=8" e
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Applications

AdS/CFT

We take our formula for ¢ and remember that ¢t is fixed by an
anomaly, ¢ = 40N?. Plugging this into our formula we find

- 2A%(A - 1)?

c ,
3N?

and putting A = 4 for the Lagrangian operator we recover
precisely the result of the calculation of an AdSs diagram!

96
=

C
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Applications

3d Ising Model

The critical 3d Ising model is a CFT with Z, symmetry where we
know experimentally that the lowest lying operators are the spin
field o with A(o) ~ 0.518 and the energy operator ¢ with

A(¢) = 1.41. Consider the OPE o(x)o(0). We have shown that
there must exist operators with twists arbitrarily close to 1.037 and
we can determine how this is approached at large spin

0.0028
S

r3e g ., 1.037 —
From convexity we learn that we have to have operators with
twists smaller than 1.037 for every spin, and indeed, we know
‘experimentally’ that there is a spin 4 operator with A = 5.02
hence 7 = 1.02, consistently with our picture. We can now make a
prediction
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Applications

3d Ising Model

s =6.8.....

3D Ising model

There must be operators in the grey shaded region for every spin.
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Perturbation Theory Around s —+ oo

Perturbation Theory Around s — oo

lim [7(s) =71 — 2] = — C_

S—0C Sl
With our tools we can compute ¢ exactly. For simplicity we display

the result for the case that 7, = d — 2 coming from the stress
tensor and we assume O; = O3 with dimension denoted by A

d*f(d+2)  AT(A)
2cr(d — 1)21 (4£2)% 1 (A — 452)°

C =

ct is the 2-point function of the stress tensors. Note that ¢ > 0,
hence the spectrum is always asymptotically convex.
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Applications

Finally, we demonstrate how our general picture for d > 2 CFTs is
consistent with explicit results from the epsilon expansion.
Consider the O(N) Wilson-Fisher fixed point at d =4 —¢. One
can calculate in an expansion in € around ¢ = 0 where the theory is
free. Our methods predict that at large s

C

-

Tod)sa — 2 + ‘o — —
S_

and we predict also ¢ > 0.

Calculating the anomalous dimensions 7,4s, in the epsilon
expansion one indeed finds [Wilson,Kogut]

‘(3N + 6
T;n‘)“njz“_-ﬁ_( ( )+

(N + 8)2s2
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Applications

Numeric Bootstrap

There has been extremely nice progress on tackling the bootstrap
equations via a systematic numeric approach
[Rattazzi,Rychkov,Vichi,EI-Showk, Paulos, Poland,
Simmons-Duffin...]. These authors have generated quite a lot of
data, some of which can be directly compared to our claims, and
as far as | can tell there is agreement.
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OPE Coefficients

Constraints on OPE Coefficients

Let us now turn to the OPE coefficients f?

O(x)0*(0) = Y £7(x)0;7(0) .

Our ideas about s — oo apply. For the operators whose twists
approach 71 + 7 + n at large s, the OPE coefficients approach the
generalized free field ones. One can compute the deviation from
the generalized free field value in our large-spin perturbation theory.

However, let us try to say something about the operators with
finite spin.
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Perturbation Theory Around s — oo

Perturbation Theory Around s — oo

lim [7(s) =11 — 2] = — CF

S—0C Sl
With our tools we can compute ¢ exactly. For simplicity we display

the result for the case that 7, = d — 2 coming from the stress
tensor and we assume O; = O3 with dimension denoted by A

d’r(d+2)  AZ(A)

2CT(d . ]_)2|‘ (dé+2) r (A .d;.é)z

C —

ct is the 2-point function of the stress tensors. Note that ¢ > 0,
hence the spectrum is always asymptotically convex.
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OPE Coefficients

Constraints on OPE Coefficients

The idea is to consider some field, J, weakly coupled to O,
[ d?xJO, and imagine doing deep inelastic scattering with J being
like the virtual photon of ordinary deep inelastic
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OPE Coefficients

Constraints on OPE Coefficients

Let us now turn to the OPE coefficients f?

O(x)0*(0) = Y £ (x)0;(0) .

Our ideas about s — oo apply. For the operators whose twists
approach 71 + 7 + n at large s, the OPE coefficients approach the
generalized free field ones. One can compute the deviation from
the generalized free field value in our large-spin perturbation theory.

However, let us try to say something about the operators with
finite spin.
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OPE Coefficients

Constraints on OPE Coefficients

The deep inelastic cross section, which is manifestly positive, is
directly related (via the optical theorem) to a two-point function in
the state |h(p) >:

opis ~ Im /'df’xe"“*<h(p>|0(x)0*(o>h(p)> .

g® < 0 is space like.

Physical deep inelastic scattering can occur as long as
p-q/(—q°) > 1. However, the OPE expansion of the two-point
function is valid when —g° >> everything.
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OPE Coefficients

Constraints on OPE Coefficients

The amplitude [ dxe’™ (h(p)|O(x)O*(0)|h(p)) is therefore
analytic in the OPE regime. By using the usual Cauchy trick, we
can relate, for fixed g2, the regions of large and small p- q/(—q?)

pq/(-q*2) pq/(-q*2)

This assumes some good behavior at infinity, which is the Regge
limit.
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OPE Coefficients

Constraints on OPE Coefficients

Thus, some OPE coefficients can be related to moments of the
deep inelastic cross section. This leads to positivity constraints.
In the case of the EM tensor in four dimensions

1
T (X) T (0) ~

L pa

1 fh] I
Cuvpr + g A pr(X) T (0) + .

A}',',\,,,f,(x) is a well known function, that depends on three
coefficients a. b, ¢ of which a. ¢ are the trace anomalies.
Considering deep inelastic scattering of virtual gravitons with
various polarizations, one finds three inequalities, and after

eliminating b one remains with fé > 22> i This exactly coincides
with the result of Hofman-Maldacena that was derived by
considering conformal energy correlators! is this general? Other

constraints on the OPE coefficients?
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OPE Coefficients

Summary

d > 2 CFTs become free at large spin.
The spectrum of twists is additive.

Systematic, non-perturbative computations of corrections to
anomalous dimensions and OPE coefficients in an expansion

A convex spectrum of operators approaching 270.
Agreement with explicit perturbative computations, gauge

gravity duality, numeric solutions of the bootstrap equations,
etc.

Non-perturbative bounds on various OPE coefficients — the
consequences and relation to previous work remain to be
explored.

Zohar Komargodski Convexity and Liberation at Large Spin

Pirsa: 14050137 Page 39/43



Pirsa: 14050137 Page 40/43




Pirsa: 14050137 Page 41/43




Pirsa: 14050137 Page 42/43




Pirsa: 14050137 Page 43/43




