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Abstract: <span>l will discuss the enhancement of space-time symmetries to Lorentz (rotation) invariance at the renormalization group fixed points
of non-relativistic (anisotropic) field theories. Upon describing examples from the condensed matter physics, | will review the general argument for
the stability of the infrared fixed points with the enhanced symmetry. Then I will focus on unitary field theories in (1+1) space-time dimensions
which are invariant under translations, isotropic scale transformations and satisfy the requirement that the velocity of signal propagation is bounded
from above. No a priori Lorentz invariance will be assumed. Still, | will prove that above properties are sufficient to ensure the existence of an
infinite dimensional symmetry given by one or a product of severa copies of conformal algebra. In particular, this implies presence of one or
several Lorentz groups acting on the operator algebra of the theory. | will conclude by discussing the challenges in extending this result to higher
space-time dimensions. </span>
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Fixed points of RG flows often enjoy enhanced
space-time symmetries
uv

Classic example:

Poincare + dilatations + unitarity

= conformal invariance

Rigorous proof in d=2,
no non-trivial counterexamples in d>2
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Proof in 1+1

Consider the correlators of EMT components in light-cone

coordinates & {

—

(&)1 (0)

fixed by
Lorentz
+ dilatations

conservation O, 7"t + O

unitarity > (n|7""  (£)]0)

NB. 7" "depends only on &~
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Can we make one step more and argue that
Lorentz (rotational) symmetry
follows from translations + dilatations + unitarity ?

NB. General scaling in non-relativistic systems

L — A“L . X —> AX

z > 1 unstable with respect to deformations towards@
(isotropic scaling)

> >

L"/li_f..*-»/.f!f 3 (r')‘,_}r))‘_ r"‘)(('),-( )) <
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Counterexample ?

> ) > )

L= = [dT + P53 — 3 (0ip1)? — c3(0i2)?

Obvious scale invariance, but seemingly no relativity ...

In fact, more than relativistic invariance !
Two independent Lorentz groups in non-interacting sectors:

L [.o
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Interacting examples |: anisotropic QED in d=2+|
(d-wave superconductors, spin liquids etc.)

4
D : /U

F'ICh. 1: The RG FG-function for the Dirac anisotropy in units
of H/.".n");\-"‘ The solid line is the numerical integration while
the dash-dotted line is the analytical expansion around the
small anisotropy (sce qg. (19-21)). At o p L. 3., crosses
zero with positive slope. and therefore at large lengthscales
the anisotropic QED g scales to an isotropic theory.
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Interacting examples |: anisotropic QED in d=2+|
(d-wave superconductors, spin liquids etc.)

4
D : /U

F'IG. 1: The RG Fg-function for the Dirac anisotropy in units
of .“\'/.".n");\-"‘ The solid line is the numerical integration while
the dash-dotted line is the analytical expansion around the
small anisotropy (sce qg. (19-21)). At o p L. 3., crosses
zero with positive slope. and therefore at large lengthscales
the anisotropic QED g scales to an isotropic theory.
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Interacting examples 2: graphene

(Spinless) electrons on honeycomb lattice with 4-fermion
interactions

Lattice symmetries = 6 couplings, out of which 3 Lorentz
invariant

One-loop calculation = Lorentz violating couplings are
always irrelevant

We suspect that this result, although clearly an outcome
here of an uncontrolled approximation, may be indica
tive of the true state of aflfairs. Hereafter we will as-
sume that the critical points A and O are stable with
respect to weak breaking of the Lorentz symmmetry in the
Lagrangian. It may also be worth mentioning that the
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Interacting examples 3: the edge of topological
superconductor (B-phase of superfluid He-3)

‘\ T T T T T T T T
L=100, g=0.5, J=d, h =51

"'1‘*\

/r//r/.r'( X ;,ﬁ’)\ | (‘J"? | ",.u."“ | | ,‘

ubsystem langth |

2 |
=7 I P XX ! U ) Figure 3: Entanglement entropy at the critical point for the
1 1-D lattice model for the parameter F . T'he para
mater 7 cequals the ratio of the bare verlocity of the Majo-

discr’etize and Simulate rana fermion to that of the boson ¢, T'he above curve shows

* . that the supersvimmetric critical point with central charge
numerlcally ¢ 7/10 survives even when the velocity anisotropy is four.

The red crosses are the numerical data while the green curve

is the theoretical expected result for central charge ¢ T/10.

The inset shows the Renyi entropies S, which also it perfectly

Lo ¢ T/10.
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Why LI fixed points are attractive in IR ?

Start from a fixed point described by relativistic CFT and
deform it by a LV operator

[_‘ /\.(’/-'/ | f"()/'flw-}'!

T time-component of a

Restrict to the deformations 0 symmetric traceless
. . . * L;
preserving spatial rotations f tensor

In unitary CFT

e all deformations with are irrelevant
* * single marginal deformation by the stress-energy
tensor (can be removed by the redefinition of the metric)
e only danger: vector operators with
(may be absent due to T or CPT)
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Global view: classification of fixed points

strong coupling
accelerates running

— emergence of LI
can be fast
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Global view: classification of fixed points

strong coupling
accelerates running ruled out in 2d

— emergence of LI (up to assumptions)
can be fast
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Theorem:
Consider a local field theory in 1+1 d, which is:

) translationally invariant
EMT: 7). 7 . 7 77" ; in general '/',"'}Q/ !
2) has positive Hamiltonian
3) unitary
4) invariant under 1 +— Af . X — AT

there is a dilatation current /)

D = / daeD" — i D, P, = P,

5) possesses discrete diagonalizable positive spectrum of scaling
dimensions; finite number of operators of every dimension
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6) the velocity of signal propagation is bounded from above:

D (t, ), P, (0,0)] 0 if
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Then the EMT splits into a sum of independent EMT's:

Pirsa: 14050136 Page 15/30



Consequences:
N conserved currents

() t

/ !

generate Lorentz boosts with the ““speeds of light” v,

In fact, N copies of conformal algebra:
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Consequences:

N conserved currents

generate Lorentz boosts with the ““speeds of light” v,

In fact, N copies of conformal algebra:

Special cases:

e N=| =B achiral CFT

e N=2 + parity =
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Non-interacting subsectors:

translations:
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PROOF

Easy Steps

1. 5iagn Up
2. Take the Class

2 Print your { ertihcate!
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Make 77)' traceless

0, D" — 0 e TV

TH —s TH 4+ Ox(e™M

1 2 I

Bring transformation of 7' under dilatations to canonical

form (use discreteness of the spectrum)

i[(D, T} = 2T + £MO\T)
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Step 2

Recall:in LI CFT 7"t (&_), T

* [/ (w. k) is localized on the light-cone
AW

In particular, vanishes inside the light-cone
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Use finite signal velocity to prove this property of EMT in general
scale invariant theory

AT
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O|[TH(0), TH(£)]]0)
scaling + positive energy = )/
x) / dwdzc ()(\,L‘)_L‘:"/)( ,‘/,’)(‘/‘L.(‘f

e c/w) O at |k /w)|

conserved + trace-free EMT

/|,r):( //.}

* Pl (22)
’» P (k/w) () and
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But we need 7/ (w, k)| O for any |7)

Consider thermal average of the commutator:

ot (. {({TE(O), THE)])r /«/‘“’/w P

positive in unitary theory, pr(—w, —k) = e~
D(ax:0.T) P (Fp(Qx, x;T) Fo(Ox., x:T

in the sense of distributions in & for ||
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J local operators <, (&) :

'.)a’(l)u (‘)r'(l')‘) 1

P, /’ ) D, 1 '/'/"

Physical meaning: there are additional conserved charges
of dim 1 (as energy and momentum)
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Consider

M 4 x I , A , “(""'I (n / dax '/‘f'.(.,{,‘. A 0)) N:':

vanishes for w #% 0
* A const

NB. Derivatives of the o -function are forbidden:
they would lead to power-law growth of the matrix element
but

Mo (n / dax x O, (t,x)|n) 7y (

»
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vanishes inside the cone |A/w| < 1 /v,,,.,.

Continue by induction

All <0,, have dim 2 = the chain closes
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In the linear envelope / of 4,, define the map

< | . «I)/: (')jllh
This is unitary with respect to a suitable inner product in /~

(P, ) o (O|PTW|0)

can be diagonalized
D, = >

(¥

‘i)r.’\ljrf s (‘)/ \II”

Define:

(er) o
/ ".lri\li

I

[#1 traceless

I symmetric
¥ conserved

1 bl
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Outlook: generalization to d>2

Seems tough because:

® it was not easy in already in 2d (recall, no rigorous
proof scale+LlI=conformal in d>2 after 28 years )

® cCcou nterexample:

L \f“’ f‘f((')

1)~

g

May still be possible with proper definition

of “interacting theory”

new ideas are needed ...
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Summary

Effective Lorentz invariance often appears at the fixed
points of RG flows

Under broad assumptions relativistic fixed points are
infrared stable

In 2d rigorous sufficient conditions for:

isotropic scale invariance * Lorentz symmetry

Generalizations to higher d ?
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