Title: Propagation of particles in discrete spacetime: Can high cosmic rays be a result of Quantum Gravity?

Date: May 22, 2014 03:50 PM

URL: http://pirsa.org/14050131

Abstract:

Pirsa: 14050131 Page 1/19

Causal set theory is based on the idea that causal structure is the fundamental structure of spacetime. Theorems by Hawking, Malament and Levichev in continuum causal analysis tell us that

 ${\sf Causal\ structure} + {\sf Volume} = {\sf Geometry}.$

Nosiphiwo Zwane

Propagation of particles in discrete spacetime

Pirsa: 14050131 Page 2/19

Causal Set Theory

A causal set C is a partially ordered set with a binary relation \prec satisfying the following properties:

- (i) Irreflexivity: $x \not \prec x, \forall x \in C$;
- (ii) Transitivity: If $x \prec y$ and $y \prec z$ then $x \prec z$, $\forall x, y, z \in C$;
- (iii) Local finiteness: $\forall x, z \in C$ the set $\{y | x \prec y \prec z\}$ is finite.

Order ⇔ Causal Structure

Number ⇔ Volume

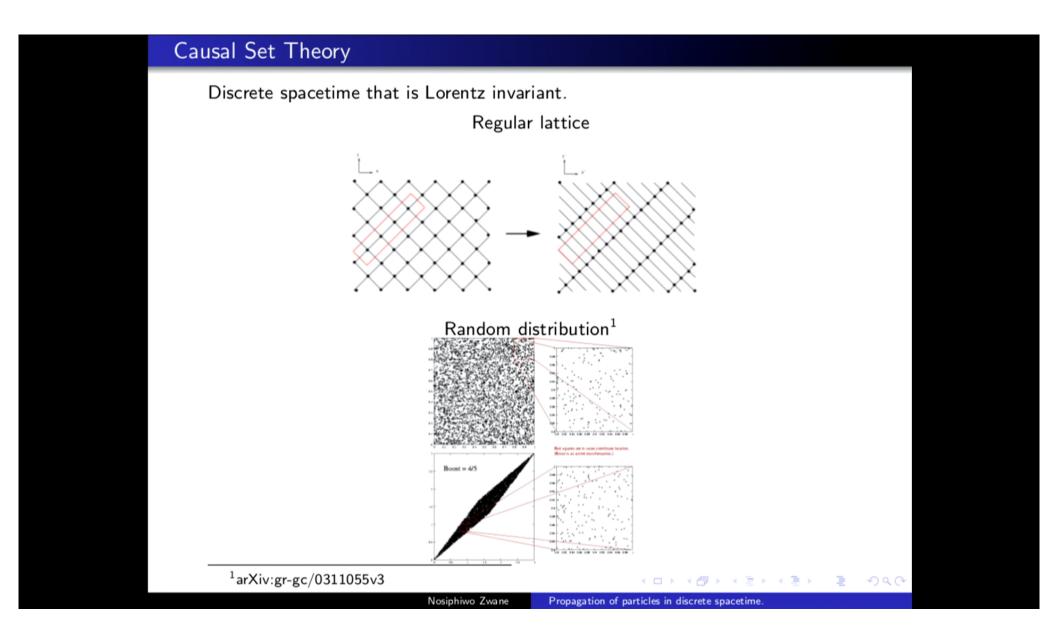
Leads to

 $Order + Number \approx Geometry$

Nosiphiwo Zwane

Propagation of particles in discrete spacetime

Pirsa: 14050131



Pirsa: 14050131 Page 4/19

Causal Set Theory Some predictions of causal set theory: Local Lorentz invariance • Particles will swerve slightly Nosiphiwo Zwane Propagation of particles in discrete spacetime

Pirsa: 14050131 Page 5/19

Propagation of particles in discrete spacetime.

Can swerves explain high energy cosmic rays?²



²S. Swordy, The energy spectra and anisotropies of cosmic rays, 2001, Space Science Reviews 99, pp85-94.

Nosiphiwo Zwane

Propagation of particles in discrete spacetime

200

Pirsa: 14050131 Page 6/19

Outline Introduction • Causal set review Propagation of particles in causal sets • Models of propagation of massive particles Simulations • Constraints on diffusion constant Conclusion ◆□ > ◆□ > ◆量 > ◆量 > 量 のQで Nosiphiwo Zwane Propagation of particles in discrete spacetime

Pirsa: 14050131 Page 7/19

Propagation of massive particles

Any process that undergoes stochastic evolution and is Lorentz- and translation invariant at macroscopic scale can be approximated by a diffusion equation³.

The diffusion is on a phase space $\mathbb{H}^3 \times \mathbb{M}^4$, where \mathbb{H}^3 is the mass shell (Lobachevsky space) and \mathbb{M}^4 is Minkowski spacetime. In terms of proper time

$$\frac{\partial \rho}{\partial \tau} = k \nabla^2 \rho - \frac{1}{m} p^{\mu} \frac{\partial}{\partial x^{\mu}} \rho$$

where $\rho \equiv \rho(p^{\mu}, x^{\mu}; \tau)$ is a scalar distribution on $\mathbb{H}^3 \times \mathbb{M}^4$, ∇^2 is the Laplacian on \mathbb{H}^3 , m is the mass of the particle and k is the diffusion constant. In terms of cosmic time

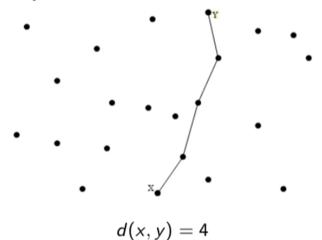
$$\frac{\partial \rho}{\partial t} = k \frac{\partial}{\partial p} \left(\frac{\sqrt{m^2 + p^2}}{m} \frac{\partial \rho}{\partial p} \right) - \frac{p}{\sqrt{m^2 + p^2}} \frac{\partial \rho}{\partial x}$$

where ρ is the probability distribution on $\mathbb{H}^3 \times \mathbb{M}^4$, p is three-momentum.

³Proved by Philpott, Dowker and Sorkin, assuming trajectories continuous in momentum

Models

• Distance between two causal elements x and y, d(x,y), is the longest chain between x and y.



◆□ → ◆□ → ◆豊 → ◆豊 → ・夏 ・ かへで

Nosiphiwo Zwane

Models

- Distance between two causal elements x and y, d(x,y), is the longest chain between x and y.
- For Trajectory to be close to geodesic, the particle will have forgetting number n_f , $n_f \gg 1$ so that swerve is minimal.
- $n_f \ll n_{macro}$ process is approximately Markovian $(1 \ll n_f \ll n_{macro})$.
- Two models intrinsic models and one partially extrinsic model.

Nosiphiwo Zwane

Propagation of particles in discrete spacetime

Pirsa: 14050131 Page 10/19

Model 1a (Intrinsic)

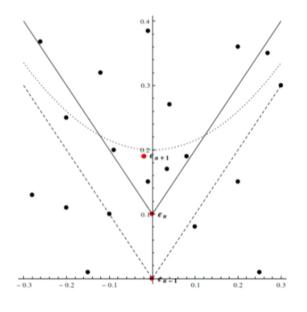
Given a segment of the path of the particle $e_1, \ldots, e_{n-1}, e_n$, the next element e_{n+1} is selected using the following rule.

- $d(e_n, e_{n+1}) = 1$,
- $d(e_{n-nf}, e_{n+1}) + \ldots + d(e_{n-1}, e_{n+1}) + d(e_n, e_{n+1})$ is minimized

Pirsa: 14050131 Page 11/19

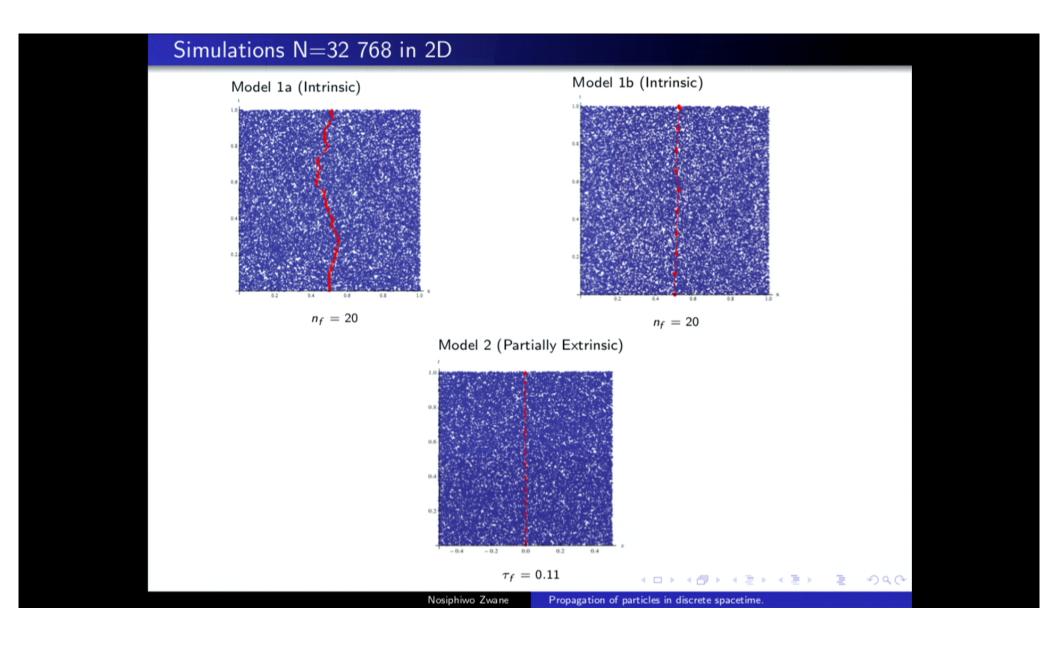
Model 1b (Intrinsic)

Given a segment of the path of the particle $e_1, \ldots, e_{n-1}, e_n$, the next element e_{n+1} is selected using the following rule.



- It is in the causal future of e_n ,
- $d(e_{n-1}, e_{n+1}) \leq 2n_f$,
- $d(e_n, e_{n+1}) \leq n_f$,
- $Max[d(e_{n-1}, e_{n+1})]$

Nosiphiwo Zwane

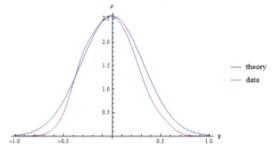


Pirsa: 14050131 Page 13/19

Simulations N=32 768 in 2D

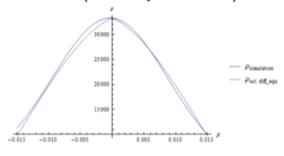
Fitting data from simulations to diffusion equation to getting diffusion constant k.

Model 1b (Intrinsic)



$n_f = 20$

Model 2 (Partially Extrinsic)



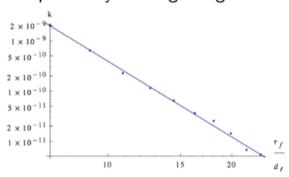
$$\tau_f = 0.04$$

4 D > 4 D > 4 E > 4 E > E 990

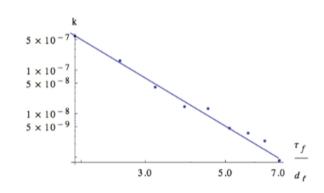
Nosiphiwo Zwane

Simulations

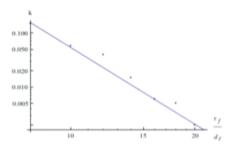
Dependency on forgetting time:



Model 2 (Partially Extrinsic) 2D, $4.8 \times 10^{-3} x^{-5.01}$



Model 2 (Partially Extrinsic) 3D, $1.33 \times 10^{-3} x^{-4.92}$



Model 1b (Intrinsic)2D 2708.46x-4.709

These results show that in both 2 and 3 dimensions

$$k \sim \frac{m^2 d_{pl}^4}{\tau_f^5}$$

Nosiphiwo Zwane

Propagation of particles in discrete spacetime

重 のので

Page 15/19

Bound on k

Bound on the diffusion constant k:

Experiment	bound on <i>k</i>	$ au_f$ (in units of ℓ_p)
Laboratory hydrogen ⁴	$k\lesssim 10^{-44} GeV^3$	$2 imes 10^{10}$
NH ₃ in Edge cloud 2 ⁵	$k \lesssim 10^{-41} GeV^3$	$6 imes 10^9$
Cosmic neutrino ⁵	$k \lesssim 10^{-61} GeV^3$	6×10^{13}

Assuming that in 4D the diffusion constant is given by

$$k \sim rac{m^2 d_\ell^4}{ au_f^5},$$

from these bounds, we can calculate the forgetting time.

- 《ロ》 《**御**》 《意》 《意》 - 意 - 釣Q()

Nosiphiwo Zwane

⁴arXiv:0311055v3

⁵arXiv:10.1103/PhysRevD.74.106001

Bound on k

Bound on the diffusion constant k:

Experiment	bound on <i>k</i>	$ au_f$ (in units of ℓ_p)
Laboratory hydrogen ⁶	$k\lesssim 10^{-44} GeV^3$	$2 imes 10^{10}$
NH ₃ in Edge cloud 2 ⁷	$k\lesssim 10^{-41} GeV^3$	6×10^9
Cosmic neutrino ⁵	$k \lesssim 10^{-61} GeV^3$	$6 imes 10^{13}$

Can swerves explain high energy cosmic rays? Unfortunately with these bounds on k, no. Maybe more sophisticated models of swerves can:

- k depends on temperature,
- k depends on density of particles,
- Consider quantum particles.

Nosiphiwo Zwane

Propagation of particles in discrete spacetime

Pirsa: 14050131 Page 17/19

⁶arXiv:0311055v3

 $^{^{7}} ar Xiv: 10.1103/Phys Rev D.74.106001$

Conclusion

- Causal set theory predicts particles will swerve and the phenomenological diffusion constants have now been tightly bounded.
- The simple model of swerving unfortunately can not explain the high energy cosmic rays, but maybe a more sophisticated model could.
- Simulations indicate that the diffusion constant scales like $k \sim \frac{m^2 d_\ell^4}{\tau_f^5}$ in 2D and 3D.

Nosiphiwo Zwane

Pirsa: 14050131 Page 19/19