Title: Change of vertex amplitude under coarse graining In Euclidean spinfoam model II

Date: May 22, 2014 02:20 PM

URL: http://pirsa.org/14050129

Abstract:

Pirsa: 14050129 Page 1/24

Pirsa: 14050129 Page 2/24

Towards coarse graining in an euclidean spinfoam model II

A. Banburski in collaboration with Lin-Qing Chen and Jeff Hnybida

Perimeter Institute for Theoretical Physics

May 22, 2014 Quantum Gravity Afternoons 2014

4 ロ ト 4 回 ト 4 差 ト 4 差 ト 9 年 り 9 (で)

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

/ 15

Pirsa: 14050129 Page 3/24

In the previous episode...

• In the previous talk you've heard about the Spin(4) holomorphic spin foam model. The partition function is defined by contractions of projectors with simplicity constraints ($[z_i^L|z_i^L\rangle = \rho^2[z_i^R|z_i^R\rangle)$):

$$\tilde{P}(\{z_i\}, \{w_i\}) = \sum_{J} {}_{2}F_{1}(-J, -J - 1; 2; \rho^{4}) \frac{\left(\sum_{i < j} [z_i | z_j \rangle [w_i | w_j \rangle\right)^{J}}{J!(J+1)!}$$

which graphically is

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

Amplitude for a 4-simplex

A part of the partition function for a 4-simplex is then simply

$$A(\{z\}) = \int \left(\prod_{i=1}^{10} d\mu(w_i)\right) \tilde{P}_1(\{z\}, \{w\}) \dots \tilde{P}_5(\{z\}, \{w\})$$

with the contractions forming a 4-simplex:

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

Amplitude for a 4-simplex

A part of the partition function for a 4-simplex is then simply

$$A(\{z\}) = \int \left(\prod_{i=1}^{10} d\mu(w_i)\right) \tilde{P}_1(\{z\}, \{w\}) \dots \tilde{P}_5(\{z\}, \{w\})$$

with the contractions forming a 4-simplex:

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

Spinor techniques

 We can perform integrals of this constrained projector by keeping track of homogeneity by a parameter τ. The projector becomes then just

$$e^{\sum_{i < j} \tau[z_i|z_j\rangle[w_i|w_j\rangle}$$

• Upon expanding this in power series, we substitute for each τ^J a factor of ${}_2F_1(-J,-J-1;2;\rho^4)$ /(J+1)! to get back to our constrained projector.

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

Spinor techniques

 We can perform integrals of this constrained projector by keeping track of homogeneity by a parameter τ. The projector becomes then just

$$e^{\sum_{i < j} \tau[z_i|z_j\rangle[w_i|w_j\rangle}$$

• Upon expanding this in power series, we substitute for each τ^J a factor of ${}_2F_1(-J,-J-1;2;\rho^4)$ /(J+1)! to get back to our constrained projector.

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

Spinor techniques II

• For what will follow, it is useful to consider the integral of the constrained projector over one of the spinors, say z_n , with a contraction $w_n = z_n$:

$$\int \mathrm{d}\mu(z_n) e^{\sum_{i < j} \tau[z_i|z_j\rangle[w_i|w_j\rangle} = \frac{e^{\sum_{1 \le i < j < n} \tau[z_i|z_j\rangle[w_i|w_j\rangle}}{\det(\mathbb{1} - \sum_{i \ne n} \tau|w_i\rangle[z_i|)}$$

where
$$d\mu(z) = \pi^{-2}e^{-\langle z|z\rangle}d^4z$$
.

• We can evaluate the determinant by using the following:

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

Spinor techniques II

• For what will follow, it is useful to consider the integral of the constrained projector over one of the spinors, say z_n , with a contraction $w_n = z_n$:

$$\int \mathrm{d}\mu(z_n) e^{\sum_{i < j} \tau[z_i|z_j\rangle[w_i|w_j\rangle} = \frac{e^{\sum_{1 \le i < j < n} \tau[z_i|z_j\rangle[w_i|w_j\rangle}}{\det(\mathbb{1} - \sum_{i \ne n} \tau|w_i\rangle[z_i|)}$$

where
$$d\mu(z) = \pi^{-2}e^{-\langle z|z\rangle}d^4z$$
.

• We can evaluate the determinant by using the following:

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

Spinor techniques II

• For what will follow, it is useful to consider the integral of the constrained projector over one of the spinors, say z_n , with a contraction $w_n = z_n$:

$$\int \mathrm{d}\mu(z_n) e^{\sum_{i < j} \tau[z_i|z_j\rangle[w_i|w_j\rangle} = \frac{e^{\sum_{1 \le i < j < n} \tau[z_i|z_j\rangle[w_i|w_j\rangle}}{\det(\mathbb{1} - \sum_{i \ne n} \tau|w_i\rangle[z_i|)}$$

where $d\mu(z) = \pi^{-2}e^{-\langle z|z\rangle}d^4z$.

• We can evaluate the determinant by using the following:

$$\det\left(\mathbb{1}-\sum_{i}C_{i}|A_{i}\rangle[B_{i}|\right)=1-\sum_{i}C_{i}[B_{i}|A_{i}\rangle+\sum_{i< j}C_{i}C_{j}[A_{i}|A_{j}\rangle[B_{i}|B_{j}\rangle$$

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

Loop identity

The integral we computed can be graphically represented as

In a bigger graph this corresponds to integrating out a face in the interior of a triangulation, but we have to add a face weight of (2j+1) ⇒ change measure to dμ̃(z) = (⟨z|z⟩ − 1)dμ(z)

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

Loop identity

The integral we computed can be graphically represented as

In a bigger graph this corresponds to integrating out a face in the interior of a triangulation, but we have to add a face weight of (2j+1) ⇒ change measure to dμ̃(z) = (⟨z|z⟩ - 1)dμ(z)

$$\int \mathrm{d} ilde{\mu}(z_4) e^{\sum_{i < j} au[z_i|z_j
angle[w_i|w_j
angle} = e^{\sum_{i < j < 4} au[z_i|z_j
angle[w_i|w_j
angle} rac{1 - \det\sum_{i
eq 4} au[w_i
angle[z_i]}{\det(\mathbb{1} - \sum_{i
eq 4} au[w_i
angle[z_i])}$$

4 ロ > 4 回 > 4 直 > 4 直 > 1 直 り Q C

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

Loop identity

The integral we computed can be graphically represented as

In a bigger graph this corresponds to integrating out a face in the interior of a triangulation, but we have to add a face weight of (2j+1) ⇒ change measure to dμ̃(z) = (⟨z|z⟩ - 1)dμ(z)

$$\int \mathrm{d}\tilde{\mu}(z_4) e^{\sum_{i < j} \tau[z_i|z_j\rangle[w_i|w_j\rangle} = e^{\sum_{i < j < 4} \tau[z_i|z_j\rangle[w_i|w_j\rangle} \frac{1 - \det \sum_{i \neq 4} \tau|w_i\rangle[z_i|}{\det(\mathbb{1} - \sum_{i \neq 4} \tau|w_i\rangle[z_i|)}$$

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

Constrained loop identity

For our model with simplicity constraints we get

or more explicitly

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

8 / 15

Pirsa: 14050129 Page 15/24

Constrained loop identity

For our model with simplicity constraints we get

or more explicitly

$$\sum_{J,J'} \frac{{}_2F_1(-J,-J-1;2;\rho^4)}{(J+1)!} N(J,J') \left(\sum_{i < j < 4} [z_i | z_j \rangle [w_i | w_j \rangle \right)^{J-J'} \left(\sum_{i < 4} [z_i | w_i \rangle \right)^{J-J'}$$

with
$$N(J, J') = \sum_{n} \frac{n!(2n-J'+1)}{(J-n)!(n-J')!J'!}$$

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

Constrained loop identity

For our model with simplicity constraints we get

or more explicitly

$$\sum_{J,J'} \frac{{}_2F_1(-J,-J-1;2;\rho^4)}{(J+1)!} N(J,J') \left(\sum_{i < j < 4} [z_i | z_j \rangle [w_i | w_j \rangle \right)^{J-J'} \left(\sum_{i < 4} [z_i | w_i \rangle \right)^{J'}$$

with
$$N(J, J') = \sum_{n} \frac{n!(2n-J'+1)}{(J-n)!(n-J')!J'!}$$

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

Pachner moves in a holomorphic spin foam model

We will now apply the loop identity to calculate Pachner moves.
 Let us start with 4-2 move:

4 ロ > 4 回 > 4 直 > 4 直 > 1 直 り Q C

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

9/15

Pirsa: 14050129 Page 18/24

Pachner moves in a holomorphic spin foam model

 We will now apply the loop identity to calculate Pachner moves. Let us start with 4-2 move:

A.Banburski (Perimeter Institute)

Pirsa: 14050129 Page 19/24

Pirsa: 14050129 Page 20/24

4-2 Pachner move

- After gauge fixing the Spin(4) symmetry, we can integrate 3 of the loops.
- The last loop has no projectors left on it, and we are left with
- In BF theory this would just be a factor of a delta function, resulting from unfixed shift symmetry
- Because of simplicity constraints we get a nonlocal mixing of strands
- The asymmetry is due to gauge fixing

4 D > 4 A > 4 B > 4 B > B 900

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

10 / 15

Pirsa: 14050129 Page 21/24

5-1 Pachner move

• From the 10 loops we can integrate 6, which leaves us with

• We get again a nonlocal mixing of strands.

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

12 / 15

Pirsa: 14050129 Page 22/24

Non-localities

- We can think of these mixings as insertions of operators. Indeed in [E. Livine, J. Tambornino, 2013] it was shown that grasping operators and Wilson loops can be written in terms of such products of spinors.
- We know these are divergent. The expectation in the field is that this corresponds to symmetry, but not necessarily away from fixed point of RG flow.
- It would be interesting to know if this is related to the recently found nonlocal measure for 5-1 and 4-2 moves in linearized quantum Regge calculus [B. Dittrich, W. Kaminski, S. Steinhaus, 2014].
- Question: is such non-locality specific to the model? We expect similar behavior for other models, which should be checked.

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

13 / 15

Pirsa: 14050129 Page 23/24

Towards renormalization

- These non-localities most likely stem from the same place as non-local couplings in real space RG – coarse graining without truncation.
- The expectation is that a fixed point we would have invariance of the partition function under at least the 5-1 move.
- We need a truncation to get locality work in progress.
- We cannot apply Tensor Network methods in 4d spin foams, need some optimal truncation - possible ideas are to keep the most divergent part (too crude?) or require asymptotics to be unchanged.

A.Banburski (Perimeter Institute)

Coarse graining moves

May 22, 2014

|4 / 15

Pirsa: 14050129 Page 24/24