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Why no factorization?

States of a gauge theory must be gauge invariant!

On a closed manifold, we have gauge-invariant observables: Wilson loops.

If 0L # 0, we allow Wilson lines to end on the boundary.
New degrees of freedom, edge modes, act like charges.

We then have an embedding:

Only C (not =) because the endpoints
must match.

H C Hsy @ Hs, [>
v

This construction can be made completely precise on the lattice, and
allows us to define an entanglement entropy.

But what if we don't know a complete set of gauge-invariant observables?

William Donnelly (U Waterloo) Entanglement and edge modes Quantum Gravity Day, Pl 4/11
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Conclusians

@ In a|gauge theory, the Hilbert space doesn't

factor in the usual way
@ There are new degrees pf freedom on S - edge mode:
Grawvjty is no exception!
BouMdary degrees of frgedom generate gauge transformations

in gravity these are diffeomorphisms of a neij hbourhood of 5

Future work
o Surface-moving diffeom¢rphisms

o Quantization (representations of the diffeomorphism algebra)

Thank you!
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Conclusions
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