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This talk is about ‘emergeability’ (Senthil
e degrees of freedom

Crucial step in EFT: identify e realization of symmetry.
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Checks: all RG invariants must be the same.
Familiar hep-th avatar: ‘t Hooft anomaly matching.
A different kind of example: no gauge invariant fermion operators in an EFT

for a bosonic system.
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Ef Foomrin (A This talk is about ‘emergeability’ [Senth]

. . PR o degrees of freedom
o Crucial step in EFT: identify o realization of symmetry.

Extra high-energy requirement:

Given a microphysical Hyy, (eg. Huv=0H))
do these dofs act on (a subspace of) Huv?

Checks: all RG invariants must be the same.

Familiar hep-th avatar: ‘t Hooft anomaly matching.

A different kind of example: no gauge invariant fermion operators in an EFT
for a bosonic system.

This might be considered a

High-Energy Problem for Low-Energy Physicists.

Many examples raised so far this week, e.g.:
can a p + ip superfluid be coupled to gravity without a spin structure?

e does a CFT always have a stress tensor?
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A e Ry High-energy physics point of view

oibre SES

: RO Goal: Identify obstructions
G vty eFal T ‘ to symmetry-preserving regulators of QFT,
: by thinking about certain states of matter in one higher dimension
which have an energy gap
(i.e. Ey — Eg > 0'in thermodynamic limit).

These ‘SPT (symmetry-protected topological) states’

[Wen et al; Reviews: Turnes-Vishwanath, 1301.0330; Senthil, review of 'physics-based approach’ 1405 4015)
are machines for producing such obstructions.

(Their study is also a useful step toward understanding more difficult states.)
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Introduction

Ideas about regularizing the Standard Model
[Wen, J. Wang-Wen, You-BenTov-Xul]

. Constraints on 3+1d QFT

from symmetry-protected topological (SPT) states
In particular, we'll identify constraints on manifest electric-magnetic

duality symmetry.
[Shauna Kravec, JM, 1306.3992, PRL

work in progress with Brian Swingle]

. A machine for explicitly realizing SPT states

[Shauna Kravec, JM, Brian Swingle, in progress]
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Realizations of symmetries in QFT and cond-mat

Basic Q: What are possible gapped phases of matter?

Def: Two gapped states are equivalent if A L;-” ;l:;w \
they are adiabatically connected e
(varying the parameters in the H whose ground ‘A b

U 1”U ¢ "
[A]:[HJ- th;ﬂr clkq;:r

state they are to get from one to the other,
without closing the energy gap)-

One important distinguishing feature: how are the symmetries realized?
Landau distinction: characterize by broken symmetries
e.g. ferromagnet vs paramagnet, insulator vs SC.
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Realizations of symmetries in QFT and cond-mat

Basic Q: What are possible gapped phases of matter?

Def: Two gapped states are equivalent if LA

they are adiabatically connected

(varying the parameters in the H whose ground ‘A

st.ate they ar.e to get from one to the other, [A]_ : 6—”‘” i
without closing the energy gap)- i [P‘.] . ) cloger

One important distinguishing feature: how are the symmetries realized?
Landau distinction: characterize by broken symmetries
e.g. ferromagnet vs paramagnet, insulator vs SC. v

Mod out by Landau: “What are possible (gapped) phases that
don't break symmetries?”" How do we distinguish them?

One (faggnswer: symmetries can be fractionalized.

[Wen): Mogical order.
'ns emergent deconfined gauge theory, long-range entanglement.

This ‘
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Mod out by Wen, too

“What are possible (gapped) phases that don't break symmetries and don't

have topological order?"
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I o
cesca 7€m SRE states are characterized by their edge states

Rough idea: just like varying the Hamiltonian in time to
another phase requires closing the gap H = H; + g(t)Ha,
so does varying the Hamiltonian in space A 1

H:H1+g(x)Hz. B

» Important role of SRE assumption: Here we are assuming that the
bulk state has short-ranged correlations, so that changes we might make
at the surface cannot have effects deep in the bulk.
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SPT states

Def: An SPT state (symmetry-protected topological state),
protected by a symmetry group G is:

a SRE state, which is not adiabatically connected to a product state by local
hamiltonians preserving G.

e.g.: free fermion topological insulators in 3+1d, protected by U(1) and e

have an odd number of Dirac cones on the surface.
One reason to care: if you gauge H C G, you get a state with topological order.
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SPT states

Def: An SPT state (symmetry-protected topological state),
protected by a symmetry group G is:
a SRE state, which is not adiabatically connected to a product state by local

hamiltonians preserving G.

e.g.: free fermion topological insulators in 3+1d, protected by U(1) and T,
have an odd number of Dirac cones on the surface.

One reason to care: if you gauge H C G, you get a state with topological order.

> Free fermlon TIS ClaSSIfIEd [Kitaev: homotopy theory; Schneider et al: edge]
k

Interactions can affect the connectivity of |

the phase diagram in both directions: \ k=0

» There are states which are adiabatically connected only via interacting

Hamiltonians [Fidkowski-Kitaev, 0904.2197, Qi, Yao-Ryu, Wang-Senthil, You-BenTov-Xul].

» There are states whose existence requires interactions:

e.g. Bosonic SPT states — w/o interactions, superfluid.
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' Def: An SPT state (symmetry-protected topological state),
protected by a symmetry group G is:

a SRE state, which is not adiabatically connected to a product state by local
hamiltonians preserving G.

e.g.: free fermion topological insulators in 3+1d, protected by U(1) and Y.
have an odd number of Dirac cones on the surface.
One reason to care: if you gauge H C G, you get a state with topological order.

> Free fermion TIS CIaSSiﬁed [Kitaev: homotopy theory: Schneider et al: edge] t

Interactions can affect the connectivity of £ i

the phase diagram in both directions: k. k=0

» There are states which are adiabatically connected only via interacting
Hamiltonians [Fidkowski-Kitaev, 09042197, Qi. Yao-Ryu, Wang-Senthil, You-BenTov-Xu].

» There are states whose existence requires interactions:
e.g. Bosonic SPT states — w/o interactions, superfluid.
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Group structure of SPT states

Simplifying feature:
SPT states (for given G) form a group:
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Group structure of SPT states \\

’\ As

- is the mirror image.

Simplifying feature:

SPT states (for given G) form a group: \ K

bulk quasiparticles still nontrivial. Not a group.

he edge of A, same ‘SPT-ness".
d gapped but topologically ordered.

e With bulk topological order,

e There can be many realizations of t
e The edge of A can be symmetric an

Inverse of A cancels the SPT-ness of A's edge.
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Group structure of SPT states \\ \\\\

A 41

Simplifying feature: -A : is the mirror image.
SPT states (for given G) form a group: \ x
\ \|\ -

e With bulk topological order, bulk quasiparticles still nontrivial. Not a group.

e There can be many realizations of the edge of A, same ‘SPT-ness’.
e The edge of A can be symmetric and gapped but topologically ordered.

Inverse of A cancels the SPT-ness of A’s edge.
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Surface-only models

Counterfactual:
Suppose the edge theory of an SPT state were realized otherwise

— intrinsically in D dimensions, with a local hamiltonian.

N
Then we could paint that the conjugate local theory on the \%\
surface without changing anything about the bulk state. A
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Surface-only models

Counterfactual:
Suppose the edge theory of an SPT state were realized otherwise
— intrinsically in D dimensions, with a local hamiltonian.

\
Then we could paint that the conjugate local theory on the \%

N
surface without changing anything about the bulk state. A

And then small deformations of the surface Hamiltonian,
localized on the surface, consistent with symmetries, can

?
pair up the edge states. = A

But this contradicts the claim that we could characterize the
D -+ 1-dimensional SPT state by its edge theory.

Conclusion: Edge theories of SPTg states cannot be regularized intrinsically in

D dims, exactly preserving on-site G-

“surface-only models” or “not edgeable”.

IWan:-Santhil. 1302.6234 — general idea, concrete surprising examples of 2-+1 surface-only states
Wen, 1303.1803 - attempt to characterize the underlying mathematical structure, classify all such obstructions
Metlitski-Kane-Fisher, 1302.6535; Bume"-Chcn-Fidhmki-\fuhmnazh. 1302.7072 ]
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regularizing the Standard Model
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Recasting the NN result as a statement about SPT states

Consider free massive relativistic fermions in
4+1 dimensions (with conserved U(1)):

G= fd‘”‘lxlTJ @+ m)V

+m label distinct Lorentz-invariant
(P-broken) phases.
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Recasting the NN result as a statement about SPT states

Consider free massive relativistic fermions in

4-+1 dimensions (with conserved U(1)): One proof of this:
Couple to external gauge field

5= [d*Hixb@+mv AS = [dA TV,

log f [D]eiSlvAl o I%I f ANFA

+m label distinct Lorentz-invariant
(P-broken) phases.

Domain wall between them
hosts (exponentially-localized)
341 chiral fermions: (Jackiw-Rebbi,
Callan-Harvey, Kaplan...]
Galling fact: if we want the extra dimension to be finite, there's another

omain wall with the antichiral fermions.
d if we put it too far away, the KK gauge bosons are too light...
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Recasting the NN result as a statement about SPT states

Consider free massive relativistic fermions in

4+1 dimensions (with conserved U(1)): One proof of this:
Couple to external gauge field

G / L (+ m) AS = [ dA V.

Iog/[DW]eis*‘H[‘”'A] x IEI/AAFA

+m label distinct Lorentz-invariant
(P-broken) phases.

Domain wall between them
hosts (exponentially-localized}
3-+1 chiral fermions: [ackiw-Rebbi.
Callan-Harvey, Kaplan...]
Galling fact: if we want the extra dimension to be finite, there's another

~in wall with the antichiral fermions.
» put it too far away, the KK gauge bosons are too light...
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o [ Loophole in NN theorem

But the SM gauge group is not anomalous, shouldn’t need extra dimensions.
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o [ Loophole in NN theorem

But the SM gauge group is not anomalous, shouldn't need extra dimensions.

Loophole: Interactions between fermions!

Old idea: add four-fermion interactions
(or couplings to other fields) which gap the
mirror fermions, but not the SM, and e

preserve the SM gauge group G. e TS

These interactions should explicitly break all
anomalous symmetries.

This requires a right-handed neutrino JlleresxilEichten 1986):

SU(S) and 50(10) ]attice GUTS [Man her papers ... recent work: Wen, J. Wang]

[Preskill-Eichten 1986]¢ Evidencedagmirror-fermighinass generation without

symmetry-breaking ¥ coup pansion.

[Geidt-Chen-Poppitz]: N e for les of a related proposal in 1+1d.
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o [ New evidence for a special role of nF = 16 - n

Collapse of free-fermion classification:
Dimensional recursion strategy [Wang-Senthi, Qi Ryu-Yaa, Wen, You-BenTov-Xul:

1. Consider neighboring phase where G is spontaneously broken (@) # 0.

2. Proliferate defects of ¢ to reach paramagnetic phase.
3. Must ¢-defects carry quantum numbers which make the paramagnet
nontrivial?
Initial step: [Fidkowski-Kitaev]
edge of 8x majorana chain is
symmetrically gappable.
same refermionization as shows
equivalence of GS and RNS
superstg 0(8) triality.

4-+1d, with many G, the collapse again

~ou-BenTov-Xu]«
8 ~ 0 (— 16 Weyl fermions per domain wall.)

Fppens at
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i New evidence for a special role of nF = 16 - n

Collapse of free-fermion classification:
Dimensional recursion strategy (Wang-Senthi, Qi Ryu-Yao, Wen. You-BenTov-Xul-

1. Consider neighboring phase where G is spontaneously broken (@) # 0.

2. Proliferate defects of ¢ to reach paramagnetic phase.

3. Must ¢-defects carry quantum numbers which make the paramagnet

nontrivial? e

Initial step: [Fidkowski-Kitaev)
edge of 8X majorana chain is
symmetrically gappable.

same refermionization as shows
equivalence of GS and RNS
superstrings, SO(8) triality.

In 4--1d, with many G, the collapse again

[You-Bchw-)(u]:
(— 16 Weyl fermions per domain wall.)

happens at k =8 =0
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Collapse of free-fermion classification:
Dimensional recursion strategy (Wang-Senthi, Qi, Ryu-Yaa, Wen, You-BenTov-Xul-

1. Consider neighboring phase where G is spontaneously broken (@) # 0.

2. Proliferate defects of ¢ to reach paramagnetic phase.
3. Must ¢-defects carry quantum numbers which make the paramagnet

nontrivial? @ (

W\
W/ A \ —
/

[nitial step: [Fidkowski-Kitaev] W “‘:':T-'/. <

b (-]

— i1\
-— A%}

edge of 8x majorana chain is b ‘\.’=R\‘
symmetrically gappable. N
same refermionization as shows t o
equivalence of GS and RNS (

superstrings, SO(8) triality. k=0
g

In 4--1d, with many G, the collapse again awkward:

8 ~ 0 (— 16 Weyl fermions per domain wall.) G>ZI
This novel strategy for identifying obstructions to gapping the

[You-BenTov-Xul:
happens at k =
Conclusion:
mirror fermions shows none when ng = 16n.
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Surface-only electrodynamics,
by example
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Loophole in NN theorem

But the SM gauge group is not anomalous, shouldn't need extra dimensions.

Loophole: Interactions between fermions!

Old idea: add four-fermion interactions
(or couplings to other fields) which gap the
mirror fermions, but not the SM, and
preserve the SM gauge group G.

These interactions should explicitly break all
anomalous symmetries.

This requires a right-handed neutrino. [PresEichien 1086]:
SU(S) and 50(10) Iattice GUTS. [Many other papers ... recent work: Wen, J. Wang]

[Preskill-Eichten 1986]2 Evidence for mirror-fermion mass generation without
symmetry-breaking via eucl. strong coupling expansion.

[Geickt-Chen-Poppitz]: numerical evidence for troubles of a related proposal in 1+1d.
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Surface-only electrodynamics,
by example
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ein S Strategy

Study a simple (unitary) gapped or topological field theory in 4-+1
dimensions without topological order, with symmetry G.

Consider the model on the disk with G-inv't boundary conditions.

The resulting edge theory is
3 “surface-only theory with respect to G"
— it cannot be regulated by a local 3 -+ 1-dim'l model while preserving G.
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dimensions without topological order, with symmetry G.

Consider the model on the disk with G-inv't boundary conditions.

The resulting edge theory is
3 “surface-only theory with respect to G"
— it cannot be regulated by a local 3 + 1-dim'l model while preserving G.
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What does it mean to be a surface-only state?

These theories are perfectly consistent and unitary — they can be realized as
the edge theory of some gapped bulk. They just can't be regularized in a local
way consistent with the symmetries — without the bulk.

1. It (probably) means these QFTs will not be found as
low-energy EFTs of solids or in cold atom lattice simulations.
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The first three examples are in D = 2+ 1, realized on the surface of D =3+1
boson SPTs protected by time-reversal:

» Non-linear sigma model on 62 with Hopf term at § =@

Z = (—l)nZn
ins umber, n
[model of high-Te: Dzyaloshinskii-Po -Wiegmann 88, surface only: Vishwanath-Senthil 12]
“Algebraic vortex liq g an insulating state of bosons (or a
paramagnet) with mghless fermionic vortices

[proposed by Fisher et al 06, surfadl (Bly: Wang-Senthil 13]

“All-fermion toric ¢ B 2 version of Zp gauge theory where

e, m,€ = em are al rmions.

[surface only: Burnell-Chen-Fid | i-Vishwanath, Wang-Senthil]
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Some known examples of surface-only states

The first three examples are in D = 2+ 1, realized on the surface of D =3 +1
boson SPTs protected by time-reversal:

» Non-linear sigma model on 62 with Hopf term at § =@

Z= Z (=1)7%
instanton number, n

[model of high-Te: Dzyaloshinskil-Polyakov-Wiegmann 88, surface only: Vishwanath-Senthil 12]

“Algebraic vortex liquid”: an insulating state of bosons (or a
paramagnet) with massless fermionic vortices

[proposed by Fisher et al 06, surface only: Wang-Senthil 13]

“All-fermion toric code": a version of Z, gauge theory where
e, m, e = em are all fermions.

[surface only: Burnell-Chen-Fidkowski-Vishwanath, Wang-Senthil]

“All-fermion electrodynamics”: a version of Maxwell theory
where e, m,€ = em are all fermions.

IntDi= 3+1, with G = 1 [surface only: Wang-Potter-Senthil 13
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A simple topological field theory in 4+1 dimensions
Consider 2-forms By in 4 + 1 dimensions, with action
S[B] = @f B! A dB’
RXE

74

In 4+ 1 dims, K is a skew-symmetggynteger 2Ng x 2Ng matrix.

Note: BAdB = ;d(B A B).
Independent of choice of metric on 1 22p-

Related models studied in: [Horowitz 1989, Blau @il 1989, Witten 1998,

Maldacena-Moore-Seiberg 2001, Belov-Moore 20 _: Hartnoll 2006]
ki) li ingfff LG = [b B
[Horowitz-Srednickil:  COUPIINE to stringgburces =45

computes linking # of conjugate fecies of worldsheets I''.
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A simple topological field theory in 4+1 dimensions
Consider 2-forms By in 4 -+ 1 dimensions, with action

55[3]=K—;-r’/;t ZB’AdBJ
X

In 40+ 1 dims, K is a sken-symmg integer 2Ng X 2Ng matrix.

Note: B AdB = 3d(B A B).
Independent of choice of metric on IR >i2,.

Related models studied in: [Horowitz 1989, Blau et J§pa9, Witten 1998,

Maldacena-Moore-Seiberg 2001, Belav-Moore 2005, i noll 2006)
[Horowite Sredicki]: - coupling to string sgfces AS= [. B!

computes linking # of conjugate sf :es of worldsheets I'".
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A simple topological field theory in 4+1 dimensions
Consider 2-forms By in 4 + 1 dimensions, with action
S[B] = @f B! A dB’
RxZ

71

In 40+ 1 dims, K is a skew-symmetric integer 2g X 2Ng matrix.

Note: BAdB = ;d(B A B).
Independent of choice of metric on IR X 22p-

Related models studied in: [Horowitz 1989, Blau et al 1989, Witten 1998,

Maldacena-Moore-Seiberg 2001, Belov-Moore 2005, Hartnoll 2006]
[Horowitz-Srednick:  coupling to string sources AS= [o B!

computes linking # of conjugate species of worldsheets I'".
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Consider 2-forms By in 4 -+ 1 dimensions, with action
S[B] = @f B! A dB’
RXE

i

In 40+ 1 dims, K is a skew-symmetric integer 2Ng X 2Ng matrix.

Note: B AdB = 3d(B A B).
Independent of choice of metric on IR X 2p.

Related models studied in: [Horowitz 1989, Blau et al 1989, Witten 1998,

Maldacena-Moore-Seiberg 2001, Belov-Moore 2005, Hartnoll 2006]
[Horowitz Srednicki):  coupling to string sources AS= [. B!

computes linking # of conjugate species of worldsheets I'".
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A simple topological field theory in 4+1 dimensions
Consider 2-forms By in 4 -+ 1 dimensions, with action
S[B] = Ku B' AdB’
T JRXE

In 40+ 1 dims, K is a skew-symmetric integer 2Ng X 2Ng matrix.

Note: BAdB = 3d(B A B).
Independent of choice of metric on IR X Z25.
N

Related models studied in: [Horowitz 1989, Blau et al 1989, Witten 1998,

Maldacena-Moore-Seiberg 2001, Belov-Moore 2005, Hartnoll 2006)
[Horowitz-Srednickl].  coupling to string sources AS= [o B!

computes linking # of conjugate species of worldsheets I'".
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BE—
on (I A simple topological field theory in 4+1 dimensions
N Consider 2-forms By in 4 -+ 1 dimensions, with action

S[B]=@fR zza"/\cusv'
X

i

In 40+ 1 dims, K is a skew-symmetric integer 2Ng X 2Ng matrix.
Note: BAdB = 3d(B A B).
Independent of choice of metric on IR X 2 2p-

Related models studied in: [Horowitz 1989, Blau et al 1989, Witten 1998,

Maldacena-Moore-Seiberg 2001, Belov-Moore 2005, Hartnoll 2006)
[Horowitz-Srednicki]: - coupling to string sources AS = fr’ B'

computes linking # of conjugate species of worldsheets .

Simplest case (Ng = 1) is realized in [1B strings on AdSs x S°,
B = Busns, C = Crr:

FS%ABAdC:ﬂ BAdC
AdSs % S° 2T JRXE

B S-duality acts by g
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Strategy

1. Solve the model — when is it an EFT for an SPT state?

2. Identify the edge states, and the symmetry G protecting them.
(Whatever we get is surface-only with respect to G.)
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ceSca RV&L Strategy

1. Solve the model — when is it an EFT for an SPT state?
Answer: when PfaffK = 1.

2. |dentify the edge states, and the symmetry G protecting them.
(Whatever we get is surface-only with respect to G.)
Answer: in the simplest realization, the edge theory is ordinary Maxwell
theory, but with manifest electric-magnetic duality (E’, B) — (§ =ER
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Strategy

1. Solve the model — when is it an EFT for an SPT state?
Answer: when PfaffK = 1.

2. Identify the edge states, and the symmetry G protecting them.
(Whatever we get is surface-only with respect to G.)
Answer: in the simplest realization, the edge theory is ordinary Maxwell
theory, but with manifest electric-magnetic duality (E,B) — (B, —E).
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All-fermion electrodynamics

So far, we've discussed 'pure’ U(1) gauge theory (free).
A stronger obstruction can be found by adding matter
(Ends of strings are electric and magnetic charges)

Manifest duality symmetry (qe) b (3 b) (Qe)
—» e, m and dyon € = em Qm ¢ d) \Gm

must have the same statistics. €SL(2,Z)
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So far, we've discussed ‘pure’ U(1) gauge theory (free).
A stronger obstruction can be found by adding matter
(Ends of strings are electric and magnetic charges)

Manifest duality symmetry (qe) iify (3 b) (Qe)
— e, m and dyon € = em Gm c d/ \Gm

must have the same statistics. eSL(2,Z)
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All-fermion electrodynamics

So far, we've discussed ‘pure’ U(1) gauge theory (free).
A stronger obstruction can be found by adding matter
(Ends of strings are electric and magnetic charges)

Manifest duality symmetry (Qe) Mg (3 3) (qe)
— q c Am
— e, m and dyon € = em m
must have the same statistics. esL(2,2)
e If e, m are bosons, € is a fermion!

‘spin from isospin': [Jackiw-Rebbi]

Y(x, xX2) = e"*’tb(Xz, X1)

Dirac

tp=6'f dw-‘lw(9=3r2-sw) =7
0 —

Dirac monopole field
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All-fermion electrodynamics

So far, we've discussed ‘pure’ U(1) gauge theory (free).
A stronger obstruction can be found by adding matter
(Ends of strings are electric and magnetic charges)

Manifest duality symmetry (Qe) g (3 3) (‘k)
= q (o} q
— e, m and dyon € = em m m
must have the same statistics. eSL(2,2)
e If e, m are bosons, € is a fermion!

‘spin from isospin': [Jackiw-Rebbi]
U(x1,x2) = &7 (x2, 1)

! T Dir.
gp:ef (] ,',9.—'_-2—,(’?) L
0 ———

Dirac monopole field
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All-fermion electrodynamics

So far, we've discussed ‘pure’ U(1) gauge theory (free).
A stronger obstruction can be found by adding matter
(Ends of strings are electric and magnetic charges)

Manifest duality symmetry (Qe) iy (3 b) (‘k)
— e, m and dyon € = em qm ¢ dj \Gm
a4 —_——r
must have the same statistics. esL(2,2)
e If e, m are bosons, € is a fermion!

‘spin from isospin': [Jackiw-Rebbi]

1,(')()(1, XZ) = ei'v"[/)(xz‘xl) _-_:"? e
Dirac =

> -
p=c [ doa0=F.0) %
9 —— '/

Dirac monopole field
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All-fermion electrodynamics

This is evidence for a 4+1d SPT
with no symmetry (analogous to Kitaev's Eq state).
fwork in progress:) Coupled-layer construction

following [Wang-Senthil] for all-fermion TC
produces trivial bosonic bulk, correct edge.

Idea: ‘dyon string condensation’ (like [Metitski-Kane Fisher])

e Each layer is ordinary electrodyamics with bosonic charges.
e b= efm.-ﬂc,-.n are mutually-local bosons.

e Condensing b; (obliquely) confines ai:1, 1 =25N=—1

e At top layer: mez, el mea, €] survive, are fermions,

are electron, monopole & dyon of U(1)odd-
3 a 4+1d local lattice model which realizes this construction.

In the bulk, contin the BdC.aheory with gapped string
matter.

7 |
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All-fermion electrodynamics

This is evidence for a 4+1d SPT
with no symmetry (analogous to Kitaev's Eq state).
fwork in progress) Coupled-layer construction

following [Wang-Senthil] for all-fermion TC
produces trivial bosonic bulk, correct edge.

Idea: ‘dyon string condensation’ (like [Metitski-Kane Fisher])

e Each layer is ordinary electrodyamics with bosonic charges.
e b= efm.:uc,-.m are mutually-local bosons.

e Condensing b; (obliquely) confines a1, IE1=22UN=1.

e At top layer: mez, elmea, el survive, are fermions,

are electron, monopole & dyon of U(1)odd-
3 a 4-+1d local lattice model which realizes this construction.

In the bulk, co is the BdC theory with gapped string
matter.
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All-fermion electrodynamics

This is evidence for a 4+1d SPT
with no symmetry (analogous to Kitaev's Eg state).
[work in progress:| COUP'Ed"Iayer Construction

following [Wang-Senthil] for all-fermion TC
produces trivial bosonic bulk, correct edge.

Idea: ‘dyon string condensation’ (like [Metitski-Kane Fisher])

e Each layer is ordinary electrodyamics with bosonic charges.
o b= efmmmz are mutually-local bosons.

e Condensing b; (obliquely) confines a1, i+1=2.N=1

e At top layer: me2, c}mleg. €, survive, are fermions,

are electron, monopole & dyon of U(1)odd-

3 a 4-+1d local lattice model which realizes this construction.

In the bulk, continuum: thisd e ory with gapped string
matter.
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Dyon string condensation
If we did this: —

AH = VE:(Ib!lz o V)z. B,' = e?e,-+2 = veia-‘.i-i-z
would higgs [T, U(1); = U(1)even % U(1)odd- |
4 -+ 1d Maxwell theory with G = U(1)even X U(1)odd, bulk photons. =

Can dualize to 2-form potentials: fole = da®/¢ = xdC°/* \e/ =
: : _;N \e/

= —dC* AxdC™ + C* A '2). \

Z —/;d (ga = {\ \ :

a=0,0

Magnetic flux tubes of broken U(1)s collimate monopoles into
monopole strings.

If instead we do this : —

b = e:[m;+1e;+2 are mutually-local bosons.

AH= \/E,-(llt:i.-i2 — v)?. Condensing b; (obliquely) confines
s, i+ 1= 2...N—1.

Binds monopole strings of 29/9 to electric fluxhiges of a
This is the effect of the additional term

o/e

1 e
A5=,/IECA
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A solvable coupled-island

construction of SPT states in 2+ 1
dimensions
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A solvable coupled-island

construction of SPT states in 2+ 1
dimensions
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An SPT machine

A lot of effort has been put into classifying SPT states.

Fewer explicit constructions exist.

Useful e.g. for understanding the phase transitions between them, and the
topologically-ordered states that result upon gauging (subgroups of) G.
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Fewer explicit constructions exist.

Useful e.g. for understanding the phase transitions between them, and the
topologically-ordered states that result upon gauging (subgroups of) G.
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An SPT machine

A lot of effort has been put into classifying SPT states.
Fewer explicit constructions exist.
Useful e.g. for understanding the phase transitions between them, and the
topologically-ordered states that result upon gauging (subgroups of) G.
Here: 2-+41d Zy paramagnets.
Virtues of our construction:
» Translation invariance not required. (Often translation invariance
can protect an otherwise unprotected edge.)
» Uniform construction of domain wall operators.
—» [Levin-Gu) braiding statistics proof of nontriviality
» |lluminates connections between the few existing examples:
[Levin-Gu (Z), Chen-Liu-Wen (Zz). Chen-Gu-Liu-Wen (mysterious general formula?)]
» The ‘duality’ method of [LeinGu) Was not available: gauging the
bulk symmetry provides a (simpler?) construction of recent ‘generalized

string-net models’ [Lin-Levin].
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cesca Rm Non-onsite symmetry
. An anomalous symmetry can be

realized in a lattice model if it is not

on-site: its action on one site

depends on others.

This means you can't gauge it just by

(Like chiral symmetry with

staggered fermions.)

coupling to link variables (without
coarse-graining first).
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Non-onsite symmetry
An anomalous symmetry can be

realized in a lattice model if it is not
on-site: its action on one site
depends on others.

This means you can't gauge it just by

(Like chiral symmetry with

staggered fermions.)

coupling to link variables (without
coarse-graining first).

Pirsa: 14050110
Page 74/98



e

S (i 7
e [ Non-onsite symmetry
P\ An anomalous symmetry can be
realized in a lattice model if it is not
on-site: its action on one site
depends on others.
This means you can't gauge it just by

(Like chiral symmetry with
staggered fermions.)

coupling to link variables (without

coarse-graining first).
For example, at the edge of the Levin-Gu Zy paramagnet,

1 .
SE H X, Hi;‘,(l—ZJZJ+1) — H XV inumber of domain walls
J J

A non-onsite symmetry S is nontrivial g7 U I1; s5UT
with U a local symmetric unitary (unjifiry evolution by a symmetric H).
How to tell?? We will find a practica riterion below.

Focus on Zy spins at each sitg ]

% Z|n) = w|n), -

K, be
PA(Z |n) = I _1), n=0.N—1 (modN)
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2w A X 7
in [ Non-onsite symmetry
S An anomalous symmetry can be
realized in a lattice model if it is not
on-site: its action on one site
depends on others.
This means you can't gauge it just by

(Like chiral symmetry with
staggered fermions.)

coupling to link variables (without

coarse-graining first).
For example, at the edge of the Levin-Gu Zo paramagnet,

SE HxJ H i%(l—ZJZJH) — H XUL- jnumber of domain walls
J J J

A non-onsite symmetry S is nontrivial if S # U[J; Ut
with U a local symmetric unitary (unitary evolution by a symmetric H).
How to tell?? We will find a practical criterion below.

Focus on Zy spins at each site:
XZ =wIX, w= e Z|n) = w"|n), -
Pn(Z) = |n)(n], X|n)= In—1), n=0.N—1 (mod N)
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o An SPT machine

Given desired action of
non-onsite symmetry on edge:
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An SPT machine

Given desired action of ‘ : Ej:j

non-onsite symmetry on edge: S

I 5
p - e #

-

Couple together ‘bags": Think of each bag as a site.
(Inspired by CZX model for Za [Chen-Liu-Wen, Swingle].)
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An SPT machine

Given desired action of
non-onsite symmetry on edge:

P

Couple together ‘bags': Think of each bag as a site.
(Inspired by CZX model for Za [Chen-Liu-Wen, Swingle].)
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An SPT machine

Given desired action of
non-onsite symmetry on edge:

P

Couple together ‘bags": Think of each bag as a site.
(Inspired by CZX model for Z (Chen-Liv-Wen, Swingle].)
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An SPT machine

Given desired action of
non-onsite symmetry on edge:

P

Couple together ‘bags': Think of each bag as a site.
(Inspired by CZX model for Za [Chen-Liv-Wen, Swingle].)

-

Hczx = — ZbD + h.c. D’_\
] '

bg = XXXXP. [bg,bz] =0 L“

1 N-1
b =T[— )  |nann)
=101 L

n=0
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An SPT machine

Given desired action of
non-onsite symmetry on edge:

P

Couple together ‘bags": Think of each bag as a site.
(Inspired by CZX model for Zz (Chen-Liu-Wen, Swingle].)

chx=-ZbD+h.c. &
O

1
b[:[ = XXXXP. [bg,bgﬁ] = (0 ‘

o —
’
/ -

N
Y
.*

N=1

1
lgs) =11 7%
IElI\/NrmD
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cesca /Qm Symmetry-protected edge states
S S Note: H doesn't know about p; S does: ( [S,Hczx] = 0)

=~ c X e
s,,_,..fcx :fc‘q(

aliiEe {

f 3

bags J

S= ij I1 H Co(Z),Zj+1)
J

{
g | (T

1L

Not onsite on edge: —

Rough edge realizes the
desired S on edge modes:
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Symmetry-protected edge states
Note: H doesn't know about p; S does: ( [S,Hczx] = 0)

A (e W B C

~

f

S=HXJ- HHCp(Zjazj-{-l) ERBEREE
j bags J y v
I g [—1 e

Not onsite on edge: —

Rough edge realizes the
desired S on edge modes:

S )

Claim of robustness: perturbing Hczx by terms respecting S, you cannot

remove this edge stuff.

i.e. no local, symmetric ung an make |gs)edge @ product state. (Gapless or
-breaking dege
ing (7): requirg
draw lattices fc

acessary.

ficy.)
hipartite graph of connections between bags.

mplicity of drawing, but translation invariance is not
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Wanted: A unitary operator C(1,2) = C(Z1, Z2) on two Zn-valued variables
which satisfies the following three simple-looking conditions:

egroup law: SV = H (Z}zjﬂ)p

J
only for closed loops: = 1
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J bags J

e Riva Bag link phases s=TIx 1116 @:Zi+)

Wanted: A unitary operator C(1,2) = C(Z1, Z2) on two Zy-valued variables
which satisfies the following three simple-looking conditions:

egroup law: SV = H (z}zj+1)P

J
only for closed loops: = 1

Page 86/98
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Bag link phases s=TIx 1116 @:Zi+)

I/B ba gal]
Wanted: A unitary operator C(1,2) = C(Z1, Z2) on two Zy-valued variables
which satisfies the following three simple-looking conditions:

egroup law: SV = H (Z}Zj+1)p

J
only for closed loops: = 1 _h,:.,._f

e gappability : Cp(1,2)C—p(1,2) =1 =

o non-triviality (flux braiding) :

% —k
GG (C3 G (2ri ke,

o N

ko £o =

, -
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cesca /Qm A uniform construction of domain-wall operators

W(R)

EH X; II P

jER\last col  bagsin R

H Co(Zj, Zj1)

JjEbag

Acts like S in the interior of R.
Threads 27/ N-flux along its boundary.
Becomes the string operator in the

topologically-ordered model with G gauged

and deconfined.
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Braiding of flux insertions

ILevin—GuI

Wg, generate symmetries:

[H,Wg] =0

If domain walls intersect once:

ky _2mikike Bk ywki
WR]_WRZ =£ N WszRl

(annoying fine print:

this formula works for kik2 & N)
This must be represented on
groundstates

(in fact, the whole spectrum)

— nontrivial edge spectrum.
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I
o [ Braiding of flux insertions

Wg, generate symmetries:

[H,Wg] =0

If domain walls intersect once:
ky _2mikike Bk yki
Wi Wg, =€ VW We

(annoying fine print:
this formula works for kikz o N)
This must be represented on
groundstates
(in fact, the whole spectrum)

_. nontrivial edge spectrum.
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o [ Braiding of flux insertions

Wg, generate symmetries:

[H,Wg] =0..

If domain walls intersect once:
ki _ 2mikike 5k yyk
WRIWRZ = N WRZ,WR1

(annoying fine print:

this formula works for kikz o N)
This must be represented on
groundstates

(in fact, the whole spectrum)

— nontrivial edge spectrum.
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I
i [ Braiding of flux insertions

Wp, generate symmetries:

[H,Wg]=0.

If domain walls intersect once:

ky L), 21rik1k2—2-% ka ynrki
WR1WR2 =@ N WszR]_

(annoying fine print:
this formula works for kika N)
This must be represented on
groundstates

(in fact, the whole spectrum)

— nontrivial edge spectrum.
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Coarse-graining transformation
step 1: change basis to on-site symmetry:

US1UJ‘ — H X; (U known but, so far, ugly.)
J
Weirdness of U: it's a local unitary, but not continuously connected to 1 by

local symmetric unitaries.

In this basis, easy to gauge. Alternative[swingie]: diagonalize action on bags.
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Back Forward file:/ [ fUsers/johnmecgreevy/Documents/fractionalization/SPT /fig-CZX-lattice~coarse-grain-movie.gif

Most Visited * Getting Started  Latest Headlines ~

Pirsa: 14050110

aps

XxK

enumerate G prola
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cpl mibv  spires ecbook Amazon kek oed

ke [Livin-Gu) for 2
should be interpreted in terms of
fluctuating domain walls and

junctions
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oo [ Non-onsite edge symmetry revisited

S

Chern-Simons description [Lu-Vishwanath]:
Edge is non-chiral boson, only the left-mover carries the Zy.
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cesca Rva Questions

For G = U(1), gauging the symmetry produces a model with
¢, # cr, but the model should still be solvable.

Some tension with theorems of [Kiev. honeycomb paper: Lin-Levin].

We have not yet made precise the connection to group

cohomology.
The condition on the link phases that the DW commutator is a c-number

should be the cocycle condition. Is it?

Origin of bipartite restriction?!?
In the contigaim, there is no difference between p — —p and orientation

reversal
Non-f@elian G?

3d7 l
WhaHlis anomalous about the all-fermion electrodynamics?

.  IEEEED
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