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Abstract: <span>This hour will be devoted to a description of quantum turbulence,that is turbulence in superfluids. The first talk (~20 minutes) will
be given by Russell Donnelly. He will describe briefly the problem of classical turbulence and how turbulence in superfluidsis different. The second

talk will be given by Carlo Barenghi who will discuss progress in the simulation of quantum turbulence which is capable of suggesting insights so
far inaccessible to experiment.</span>
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Classical and Quantum Turbulence

Water flowing past a
cylinder —» turbulent
wake

Flow past
an aerofoil

Water flowing
through a grid
_)
homogeneous
turbulence

*The flow of water is governed by classical mechanics.
*How is turbulence modified if the water in replaced by a superfluid?

(Remember flow of a superfluid is strongly influenced by quantum effects).
eHow does quantum turbulence differ from classical turbulence?
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Turbulence is the chaotic motion of a fluid that occurs at sufficiently high
flow rates. A common example is the flow of water from a tap: turn the
tap on a little and the water runs out in a regular fashion called laminar
flow. Turn the tap on fully and the flow becomes an irregular torrent.
Such turbulent flow is characterized by regions of circulating fluid called
eddies or vortices. If these features are ordered, they can lead to large
scale structures such as whirlpools or tornados. Usually the eddies are
highly irregular and interact in a complex and unpredictable manner.
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Classical turbulence consists
of eddies (Leonardo 1452-
1519)

o] L e,
A TG 4

0 ’ UNIVERSITY OF OREGON

Pirsa: 14050104 Page 7/55



Classical turbulence consists
of eddies (Leonardo 1452-
1519)
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Classical Turbulence

J Vv 1
e Based on the Navier-Stokes equation. at ' (v-Vv=-_Vp+v V3
T
Non-linear Dissipative term

inertial term

* |n turbulent flows the non-linear (inertial) term of this equation becomes
important relative to the dissipative term.

® The ratio non-linear inertial term iIs the Reynolds number, Re.
viscous term Re = LU
Vv

At high Re dissipation can be neglected.

* Behaviour of turbulence at very high Re when fully
developed: Richardson cascade and Kolmogorov energy

spectrum).
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Classical Turbulence

J Vv 1
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Richardson cascade and the Kolmogorov spectrum

* Non-linearities cause coupling of eddies of different sizes.

® This coupling causes turbulent energy to flow (at a
rate ¢ per unit mass) from large eddies to smal’ Energy in

eddies in a cascade.
(PR

QOO

€ 'sleleoleleleololels,
eleleloleleolalololaolola]

ul/v>>1

OOOOOOOOOOOOOOOOOO

Energy dissipation
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Richardson cascade and the Kolmogorov spectrum

* Non-linearities cause coupling of eddies of different sizes.

® This coupling causes turbulent energy to flow (at a
rate ¢ per unit mass) from large eddies to smal’ Energy in
eddies in a cascade.

QOO

e If ul/vs>>1 the flow of energy in the casc
is unaffected by viscosity and conserves energ\ OO0

We call this an inertial flow of energy. 00000000000 O

e When U'l/v ~1 viscous dissipation takesplatg°°°°°°°°°° \

and the cascade is terminated.
Energy dissipation

* How is energy distributed over eddy size in the steady

state?
e According to Kolmogorov, for the inertial range: U’ = ¢ *°[*” EE!ZEL%‘:;""
e Cut-off due to viscosity isat 7 =(v3/e)"
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Homogeneous Isotropic Turbulence

The energy spectrum E is independent of energy production processes

for all wavenumbers large compared to those at which the production occurs.
Then E depends only on wavenumber, dissipation and viscosity

E=E(k, g, v).
If the cascade is long enough, there may be an intermediate range (the inertial

sub-range) in which the action of viscosity has not yet come in, that is E=E(K,£).
Then dimensional analysis gives

E=A8 20 k 53
which is the famous Kolmogorov result. Here A is a constant.
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Energy spectrum on Kolmogorov ideas
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Search for the 5/3 spectrum
The difference in tidal phase drives a steady current
through the tidal channel at about Re~4x10 7

R N

pr= 4
Quadra
Island

Island

-
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Turbulence probe
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Ore dvmeraional 1pectrum function (m’y ¥)

w-re —
+
WO - -
'o.l 2 e A — N A
1 10 »w! »w0* 1wt

0 | UNIVERSITY OF OREGON

Wavenumbes (m ')

Pirsa: 14050104

Page 19/55



What is Quantum Turbulence and
Why Study It?
Helium Il and *He-B are regarded as a mixture of a
normal viscous fluid and a totally inviscid superfluid.

In principle either or both fluids could become
turbulent
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Fountain Pressure

s=e P
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Viscosity Paradox in He ||
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These experiments suggest there are two
different fluid present: a "normal fluid”
which damps the oscillating disc, and a

"superfluid"” which can flow through the
smallest channels.

P =pP,T P,
The two fluids can also have
their own velocity fields

V., Vg

|
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Tisza Two Fluid Equations

D
p =Y - _PsypypsSvr
Y 5 |
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These equations result in two forms of
sound, called “first” and “second”
sound
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Shortly thereafter Schwarz and Donnelly built an apparatus the could
fire vortex rings at an array of quantized vortex lines such as is shown
in Figure 5 [9]. The results show that the cross section for scattering
of rings from lines is the order of the ring diameter, which indicates
that the line and ring need to be very nearly in contact to have a
strong interaction. This result is in good agreement with Feynman’s
speculations as quoted in the discussions by Feynman of Figure 4.
Schwarz then began his careful numerical simulations of vortex line
turbulence continuing over a period of years. For an interesting
example of Schwarz’'s work see Figure 7
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In turbulent counterflows the vortex lines
are considered to be a tangle of quantized
vortex lines (a suggestion of Feynman).

DR

(
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ci\c.-fﬁi"
Much can be learned about
quantized vortex lines by

¢ -
1
e
S

=

SN .~ computer simulations
? —<F | pioneered by Schwarz and
5 S A PR continued by Barenghi,

Tsubota and others.
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Experimental results on superfluid “He

U Pressure fluctuations: experiment of Maurer and Tabeling on swirling flow
generated by two counter-rotating blades.

(a) 23 K 10° |
(b) 2.08K A
(c) 1.4 K Lot}

10° |
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10 100 1000
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Experimental results on superfluid ‘He

J Pressure fluctuations «oerment of Maurer and Tabeling on swirling llow

generated by two counter-rolating blades
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No change as we Qo through
the superfluid phase transition!

Hence the same type of
cascade, with the same
Kolmogorov spectrum above
and below the transition frequency (112)

temperature!
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Vortex lines

U = |¥|e'” = Velocity v = (h/m)Vao

m

h . :
% v - dr = — ~ If C encloses a vortex line Q
J C

A vortex is a hole (radius & =~ 10~ 8cm in 4He)
around which the phase changes by 27, and v = «/(27r)

v

Vortex in a homogeneous Phase
condensate (e.g. liquid helium)

Carlo F. Barenghi Quantum turbulence
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Vortex lines

N
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Vortex in an inhomogenous condensate (e.g. trapped atomic gas)

Carlo F. Barenghi Quantum turbulence
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Vortex lines

LLLLLLL L L

5 &

TI7777 777777777777
e Vortex rings, Kelvin waves, vortex knots:
studied since the times of Helmholtz, Lord Kelvin and Tait

e Vortex lines = stable topological defects in a perfect fluid =
attractive models of elementary particles

W. Rankine Molecular vortices 1849
W. Thomson (Lord Kelvin) On vortex atoms 1867
J.J. Thomson A treatise on the motion of vortex rings 1883

Carlo F. Barenghi Quantum turbulence
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Visualization of individual vortex lines

-,

Vortex lattice in (Maryland)
a rotating superfluid

‘ ..oe (Berkeley)

Carlo F. Barenghi Quantum turbulence

Pirsa: 14050104 Page 37/55



Vortex tangle

Quantum turbulence is a tangle of vortex lines, generated

e with propellers, grids, forks, wires, heat flows, etc in liquid helium
e with laser stirrers, shaking the trap, etc in atomic condensates

Within a turbulent tangle, we recognize processes such as
Kelvin waves, links and knots, reconnections

Carlo F. Barenghi Quantum turbulence
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Dispersion relation of Kelvin waves
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Kiknadze & Mamaladze, JLTP 2002
Hanninen, Tsubota & CFB, PRE 2006
Helm, CFB & al, PRA 2011
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Quantum turbulence

There seems to be two forms of quantum turbulence:
(Volovik 2004; Walmsley & Golov 2008)

e Ultra—quantum:

featureless, most energy at mesoscales,
Vinen 1957

e Semi—classical:
contains coherent structures,
most energy at large scales as in ordinary turbulence
classical Kolmogorov spectrum (Maurer & Tabeling 1998)
{agassical decay rate (Smith, Donnelly, Goldenfeld & Vinen 1993)
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Quantum turbulence

spectrum

l i . Kolmogorov energy

Total vorticity (left) decomposed into
€7 coherent (right, top) and
incoherent part (right, bottom)

Baggaley, Laurie & CFB, PRL 2012
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Quantum turbulence

Kolmogorov
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L

bottleneck ?

Kelvin wave
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e

phonon
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Energy spectrum, o

Roche & al, Grenoble Double cascade

Possibility of bottleneck accumulation of energy between the
semi—classical (3D) kK °/2 Kolmogorov cascade for k < 27 /¢
angl, the (1D) Kelvin wave cascade for k > 27 /¢, where ¢ is the
average distance between vortex lines

CFB, L'vov and Roche, PNAS 2014
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Energy spectrum,
Roche & al, Grenoble Double cascade

Possibility of bottleneck accumulation of energy between the
semi—classical (3D) kK °/2 Kolmogorov cascade for k < 27 /¢
angl, the (1D) Kelvin wave cascade for k > 27 /¢, where ¢ is the

average distance between vortex lines

CFB, L'vov and Roche, PNAS 2014
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Conclusion

™

Why quantum turbulence 7
@ Interesting physics per se
(vortex dynamics, Kibble—Zurek, etc)

Relation with classical turbulence:
Does classical behaviour emerge from a sufficient number of

quanta ?
Topology of turbulent flows
Challenge: flow visualization, small probes

=
T
=)
7

See recent PNAS special issue on quantum turbulence
edited by CFB, Skrbek & Sreenivasan (March 2014)

Thank you !
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