Title: New strong interactions and the t t-bar asymmetry

Date: May 13, 2014 01:00 PM

URL: http://pirsa.org/14050092

Abstract: The CDF and D0 experiments at Tevatron measure a top-quark forward-backward
br> asymmetry significantly larger than the standard-model prediction.
br> We construct a model that involves new strong interactions at the electroweak scale
br> and can explain the measured asymmetry. Our model possesses a flavor symmetry
br> which allows to evade flavor and collider constraints, while it still permits flavor-violating
br> couplings of order 1 which are needed to generate the asymmetry via light t-channel vectors.

Pirsa: 14050092 Page 1/34

New strong interactions and the $t\bar{t}$ asymmetry

Joachim Brod

in collaboration with Jure Drobnak, Alexander L. Kagan, Emmanuel Stamou, Jure Zupan

Particle Physics Seminar
Perimeter Institute for Theoretical Physics, May 13, 2014

Joachim Brod (University of Cincinnati)

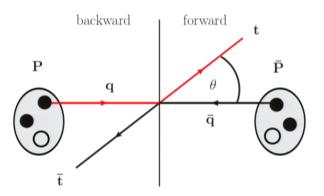
New strong interactions and the $t\bar{t}$ asymmetry

1 / 33

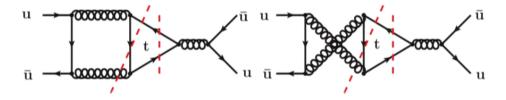
Pirsa: 14050092 Page 2/34

Plan

- Situation
- Flavor-symmetric scenarios
- Strong-interaction realization
- Results


Joachim Brod (University of Cincinnati)

New strong interactions and the $t \bar t$ asymmetry


2 / 33

Pirsa: 14050092 Page 3/34

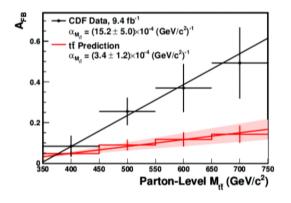
A_{FB} in the standard model

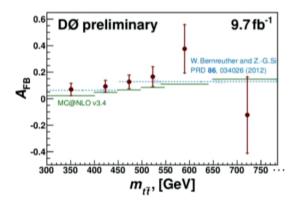
Asymmetry arises at NLO QCD from real and virtual gluons:

Joachim Brod (University of Cincinnati)

New strong interactions and the $t \bar t$ asymmetry

3 / 33


Pirsa: 14050092 Page 4/34


Measurements - Tevatron

$$A_{FB} = rac{N(y_t > y_{ar{t}}) - N(y_t < y_{ar{t}})}{N(y_t > y_{ar{t}}) + N(y_t < y_{ar{t}})} = (12.3 \pm 2.5)\%$$

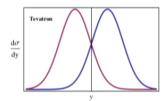
[CDF, arxiv:1211.1003 and D0 March 2014 update, naive average]

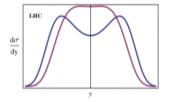
$$A_{FB} = (8.8 \pm 0.6)\%$$
 [Bernreuther & Si, arxiv:1205.6580]

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

4 / 33


Pirsa: 14050092 Page 5/34


Measurements - LHC

$$A_C = \frac{N(|y_t| > |y_{\bar{t}}|) - N(|y_t| < |y_{\bar{t}}|)}{N(|y_t| > |y_{\bar{t}}|) + N(|y_t| < |y_{\bar{t}}|)}$$

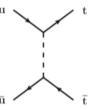
$$A_C(7\text{TeV}) = (1.0 \pm 0.8)\%$$
 [ATLAS, CMS naive average] $A_C(8\text{TeV}) = (0.5 \pm 0.9)\%$ [CMS]

$$A_C(7\text{TeV}) = (1.23 \pm 0.05)\%$$
 [Bernreuther & Si, arxiv:1205.6580] $A_C(8\text{TeV}) = (1.11 \pm 0.04)\%$ [Bernreuther & Si, arxiv:1205.6580]

[Ahrens et al., arxiv:1212.5859]

Joachim Brod (University of Cincinnati)


New strong interactions and the $t\bar{t}$ asymmetry


5 / 33

Pirsa: 14050092 Page 6/34

A_{FB} and new physics

- Need interference between NP and SM [Grinstein et al., arxiv:1102.3374]
- Favored scenarios:
 - s-channel: color-octet vector with axial couplings
 - t-channel: color singlet, or colored resonances (Rutherford peak: t-channel propagator $\propto 1/[2E^2(1-\cos\theta)+M^2])$

t-channel:

- t-channel vectors with mass of a few hundred GeV yield large A_{FB} , increasing with $M_{t\bar{t}}$ [Jung et al., arxiv:0907.4112]
- A the same time good agreement with measured spectrum at large $M_{t\bar{t}}$ (detector efficiency) [Gresham et al., arxiv:1103.3501]

Joachim Brod (University of Cincinnati)

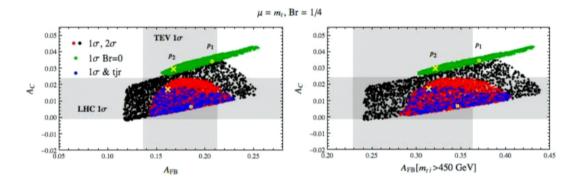
New strong interactions and the $t\bar{t}$ asymmetry

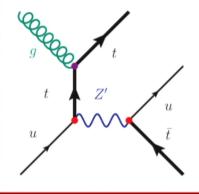
6 / 33

Pirsa: 14050092 Page 7/34

Challenges

- Total and differential cross sections
- Same sign top production $uu \rightarrow tt$
- Single top production
- ullet t-channel NP needs large flavor-offdiagonal couplings Z'-u-t
 - \Rightarrow FCNC's
- ullet Associated production $gq
 ightarrow t + (Z'
 ightarrow \overline{t}q)$
 - ullet Contribution to $\sigma_{tar{t}}$ at LHC
 - top+jet resonance searches
 - ullet Need suppressed ${\sf Br}(Z' o ar t q)$


Joachim Brod (University of Cincinnati)


New strong interactions and the $t\bar{t}$ asymmetry

7 / 33

Pirsa: 14050092 Page 8/34

Negative contribution to A_C by associate production

- Breaks correlation between A_{FB} and A_C
 [Drobnak et al., arxiv:1209.4872]
- Need other dominant decay mode to obtain ${\rm Br}(Z' \to \bar t u) \approx 0.25$
- In our case Z' will be $K^*_{
 m HC}$ resonance, main decay $K^*_{
 m HC} o \pi_{
 m HC} \pi_{
 m HC}$

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

8 / 33

Pirsa: 14050092 Page 9/34

Flavor symmetric scenarios

• Look at models which are invariant under global

$$G_F = U(3)_{Q_L} \times U(3)_{u_R} \times U(3)_{d_R}$$

or subgroup

$$H_F = U(2)_{Q_L} \times U(2)_{u_R} \times U(2)_{d_R} \times U(1)^3$$

Flavor symmetric models that

- ullet do not contain breaking of G_F (or H_F) beyond SM Yukawas
- ullet contain new fields in nontrivial representations of G_F or H_F
- ullet have $\mathcal{O}(1)$ couplings to top and light quarks can avoid
- like-sign top or single top production, FCNCs, e.g., $D^0 \bar{D}^0$ mixing while still accounting for A_{FB} . [Grinstein et al., arxiv:1108.4027]

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

9 / 33

Pirsa: 14050092 Page 10/34

Flavor symmetric scenarios

Simple possibility: $U(3)_{U_R}$ flavor octet vectors coupling only to right-handed up quarks

- t–channel: $(V_{\mu}^4-iV_{\mu}^5)(\overline{t}_R\gamma^{\mu}u_R)+\dots$ " K^* "
- s-channel: $V_{\mu}^8(\bar{u}_R\gamma^{\mu}u_R+\bar{c}_R\gamma^{\mu}c_R-2\bar{t}_R\gamma^{\mu}t_R)$ " Φ,Ω "
- Phenomenological models with massive vectors not renormalizable
- Two options for UV completion
 - local horizontal symmetry flavor gauge bosons (FGB's)
 - composite vector meson flavor multiplets
- FGB's problematic for low-scale models
- Composite vector mesons naturally have new dominant decay channels $V \to PP$ (needed for $\sigma_{t\bar{t}}$, dijet constraints)

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

10 / 33

Pirsa: 14050092 Page 11/34

Strong interaction realization

- New confining $SU(3)_{HC}$ "hypercolor" gauge interaction
- Use QCD as a prototype
- Scale $\Lambda \approx 200 \text{GeV}$
- Add SU(2)_L singlet
 - ullet vectorlike $[SU(2) imes U(1)]_{U_R}$ flavor triplet of hypercolor quarks $(\mathcal{Q}_{L_i}, \mathcal{Q}_{R_i})$
 - ullet flavor singlet hypercolor scalar ${\cal S}$
- Transform under $SU(3)_{HC} \times SU(3)_C \times SU(2)_L \times U(1)_Y$ as

$$Q_{L_i,R_i}(3,1,1,0), \quad S(\bar{3},3,1,2/3)$$

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

11 / 33

Pirsa: 14050092 Page 12/34

Setup

$$\mathcal{L}_{\mathsf{NP}} = (h_{ij} \bar{u}_{R,i} \, \mathcal{Q}_{L,j} \, \mathcal{S} + \mathsf{H.c.}) + m_{\mathcal{Q}ij} \, \bar{\mathcal{Q}}_i \, \mathcal{Q}_j + m_s^2 |\mathcal{S}|^2$$

- $h = diag(h_1, h_1, h_3), m_Q = diag(\mu_1, \mu_1, \mu_3).$
- Take $\mu_1 < \mu_3 \ll \Lambda$, like u, d, s in QCD
- First two generations: "Isospin symmetry"
- Think of as " $(u, d, s) \leftrightarrow (Q_u, Q_c, Q_t)$ "
- ullet Hypercolor sector only couples to right-handed quarks due to choice of representations for \mathcal{Q}, \mathcal{S} .

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

12 / 33

Pirsa: 14050092

Lowest hypercolor resonances

- ullet nonet of 3S_1 ($J^{PC}=1^{--}$) vector resonances ho_{HC} , K_{HC}^* , ϕ_{HC} , ω_{HC}
- ullet nonet of 3P_1 ($J^{PC}=1^{++}$) axial-vector resonances ${\it a}_1^{
 m HC}$, ${\it K}_{1A}^{
 m HC}$, ${\it f}_1^{
 m HC}$
- For simplicity, we neglect the ${}^{1}P_{1}$ nonet $(K_{1A} K_{1B} \text{ mixing})$
- ullet Kinetic term has chiral $SU(3)_L imes SU(3)_R$ symmetry (as in QCD)
- $\langle \bar{\mathcal{Q}} \mathcal{Q} \rangle \neq 0$ condensates lead to octet of (pseudo-)Nambu-Goldstone bosons π_{HC} , K_{HC} , η_{HC}
- Neglect singlet η'_{HC}

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

13 / 33

Pirsa: 14050092 Page 14/34

Scaling

- Naive scaling relation $rac{f_\pi^{
 m HC}}{f_\pi} \sim rac{f_
 ho^{
 m HC}}{f_
 ho} \sim rac{m_
 ho^{
 m HC}}{m_
 ho}$, $rac{f_
 ho^{
 m HC}}{m_
 ho^{
 m HC}} \sim 0.2$
- ullet A general analysis of A_{FB} suggests $m_
 ho^{HC}\sim 200{
 m GeV}$
- ullet \Rightarrow $f_{\pi}^{
 m \, HC} \sim 20 {
 m GeV}$
- $\bullet \ \left(m_\pi^{
 m HC}
 ight)^2 pprox 8\pi f_\pi^{
 m \, HC} m_Q$
- ullet $\Rightarrow m_\pi^{\mathsf{HC}} = \mathcal{O}(100)\mathsf{GeV}$ for HC quark masses $\mathcal{O}(10)\mathsf{GeV}$
- ullet Vector meson dominance (VMD) yields $g_{
 ho\pi\pi}\sim M_
 ho/f_
 ho$

$$rac{\Gamma(
ho^{
m \, HC}
ightarrow \pi^{
m \, HC} \pi^{
m \, HC})}{M_{
ho}^{
m \, HC}} pprox 10\%$$

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

Resonances containing $\mathcal{S}, \mathcal{S}^*$

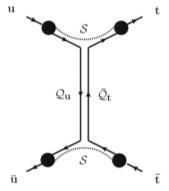
- ullet In principle, could have $V^{\mu}_{\mathrm{o,s}}[\mathcal{S}^{*}\mathcal{S}]$, $u'[\mathcal{SQ}]$ bound states
- ullet Partonic width $\Gamma(\mathcal{S} o u_j ar{\mathcal{Q}}_j) \propto m_{\mathcal{S}} |h_j|^2 pprox 230\,\mathrm{GeV}$ in our benchmark
- ullet Hadronization time governed by $\mathcal{O}(ext{few})f_\pipprox 50\, ext{GeV}$
- ullet Lighter $V_{
 m o,s}$ would lead to large bump in tar t differential spectrum

$$\Rightarrow m_{\mathcal{S}} \approx 500 \, \text{GeV}$$

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

15 / 33


Pirsa: 14050092 Page 16/34

Mixing and partial compositeness

- Mixing with SM RH up quarks induced by Yukawa couplings $h_i \bar{u}_{R,i} Q_{L,i} S$
- Effective width is small for small virtuality
- ullet troduction via K^* , K_1 , K exchange and u_i-u_i' mixing

$$|u_{R_i(L_i)}\rangle^{\mathsf{mass}} = \cos \theta_{R_i(L_i)} |u_{R_i(L_i)}\rangle^{\mathsf{flav.}} - \sin \theta_{R_i(L_i)} |u'_{R_i(L_i)}\rangle^{\mathsf{flav.}}$$

$$\sin heta_{R_i} pprox \sqrt{2} h_i rac{f_{u_i'}}{M_{u_i'}} \,, \qquad \sin heta_{L_i} pprox \sqrt{2} h_i rac{f_{u_i'} m_{u_i}}{M_{u_i'}^2}$$

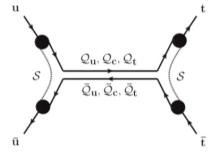
Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

Couplings to quarks

ullet Use VMD arguments to estimate $g_
ho pprox m_
ho/f_
ho$ (similar for axial vectors)

$$\mathcal{L} = \mathsf{g}_{\rho} \, \rho_{\mu}^{\mathsf{a}} \, \bar{\mathsf{u}}' \, \mathsf{T}^{\mathsf{a}} \gamma^{\mu} \mathsf{u}'$$


- $\rho^{HC} u_i u_j$ coupling follows from mixing
 - To get order 1 couplings, need $h \approx 2$. $\Rightarrow \sin \theta_{R_i} \approx 0.2 0.4$
 - Main decay channel into HC pions
 - ullet $\mathcal{O}(8)$ tuning of phase space for $K^* o K\pi$ to get $\mathsf{Br}(K^* o ar u t)=\mathcal{O}(30\%)$
- ullet $\pi^{ ext{HC}}-u_i'-u_j'$ coupling via derivative interactions ("pion nucleon coupling")
- $\pi^{HC} u_i u_j$ coupling again from mixing
 - HC pions decay into jet pairs

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

Ideal mixing

- $\psi_{\text{HC}}^8 = (\mathcal{Q}_u \bar{\mathcal{Q}}_u + \mathcal{Q}_c \bar{\mathcal{Q}}_c 2\mathcal{Q}_t \bar{\mathcal{Q}}_t)/\sqrt{6}$ and $\psi_{\text{HC}}^1 = (\mathcal{Q}_u \bar{\mathcal{Q}}_u + \mathcal{Q}_c \bar{\mathcal{Q}}_c + \mathcal{Q}_t \bar{\mathcal{Q}}_t)/\sqrt{3} \text{ could contribute in s-channel}$
- In QCD $\psi^8 = (u\bar{u} + d\bar{d} 2s\bar{s})/\sqrt{6}$ and $\psi^1 = (u\bar{u} + d\bar{d} + s\bar{s})/\sqrt{3}$ mix into mass eigenstates $\omega \approx (u\bar{u} + d\bar{d})/\sqrt{2}$ and $\phi \approx (s\bar{s})$
- ullet In this case s-channel contribution to A_{FB} and $\sigma_{tar{t}}$ vanishes

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

Quark model fit

To determine meson masses and the mixing angle, we follow [Cheng & Shrock, arxiv:1109.3877]

- ℓ light quarks m_q , one heavier quark m_Q
- For $\ell = 2$, resembles QCD with $m_u = m_d < m_s$
- Fit expressions for meson masses in simple quark model to observed vector meson masses, in dependence of quark masses
- E.g. $M_{\rho_{HC}} = \mu^{HC} (E^{HC} + 2m_{Q_1})$
- From this determine mixing angle, as well as meson masses for quark masses different from QCD
- Scale up from Λ_{QCD} to Λ_{HC} .

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

19 / 33

Pirsa: 14050092 Page 20/34

The χ^2 fit

- ullet We minimize the χ^2 of the
 - inclusive, high-, and low-bin Tevatron AFB
 - LHC7 charge asymmetry A_C
 - ullet inclusive LHC and Tevatron $tar{t}$ cross section
- We fit for the UV parameters
 - Λ_{HC}
 - HC quark and scalar masses
 - Yukawa couplings
- We also allow for small deviations from QCD scaling

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

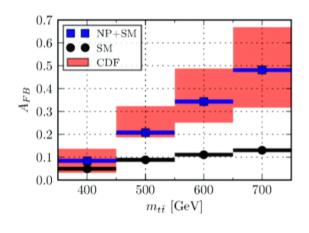
20 / 33

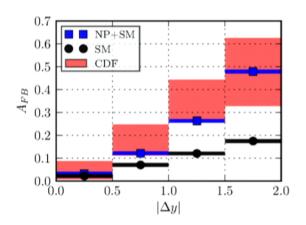
Pirsa: 14050092 Page 21/34

Benchmark

UV input: $\Lambda_{HC}=171 \text{GeV}$, $m_{\mathcal{Q}_u}=3.1 \text{GeV}$, $m_{\mathcal{Q}_t}=30.5 \text{GeV}$, $M_{\mathcal{S}}=520 \text{GeV}$, $h_1=2.0$, $h_3=4.4$, plus "fudge factors" of $\mathcal{O}(1)$ for scaling

HC resonance	mass	decay width	
π	62 GeV	$4\cdot 10^{-7}m_\pi$	
K	143 GeV	pprox 0	
η	161 GeV	$1.3\cdot 10^{-7}~m_\eta$	
ρ	177 GeV	$0.059 \ m_{ ho}$	
K^*	211 GeV	$0.002 m_{K^*}$	
$V_H[\phi]$	242 GeV	$8\cdot 10^{-7}~m_{V_H}$	
$V_L[\omega]$	180 GeV	$0.001~m_{V_L}$	


Joachim Brod (University of Cincinnati)


New strong interactions and the $t\bar{t}$ asymmetry

21 / 33

Pirsa: 14050092 Page 22/34

Resulting A_{FB} from benchmark

$$A_{FB}=17.3\%$$

$$A_{FB}^{\sf CDF} = (16.4 \pm 4.7)\%$$

[CDF, arxiv:1211.1003]

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

22 / 33

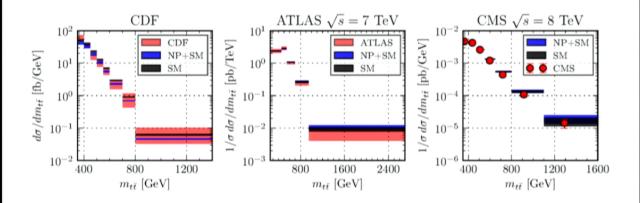
Pirsa: 14050092

Resulting A_C from benchmark

Recall

$$A_C(7 \text{TeV}) = (1.0 \pm 0.8)\%$$
 [ATLAS, CMS naive average] $A_C(8 \text{TeV}) = (0.5 \pm 0.9)\%$ [CMS]

$$A_{C}(7 \text{TeV}) = (1.23 \pm 0.05)\%$$
 [Bernreuther & Si, arxiv:1205.6580]
 $A_{C}(8 \text{TeV}) = (1.11 \pm 0.04)\%$ [Bernreuther & Si, arxiv:1205.6580]

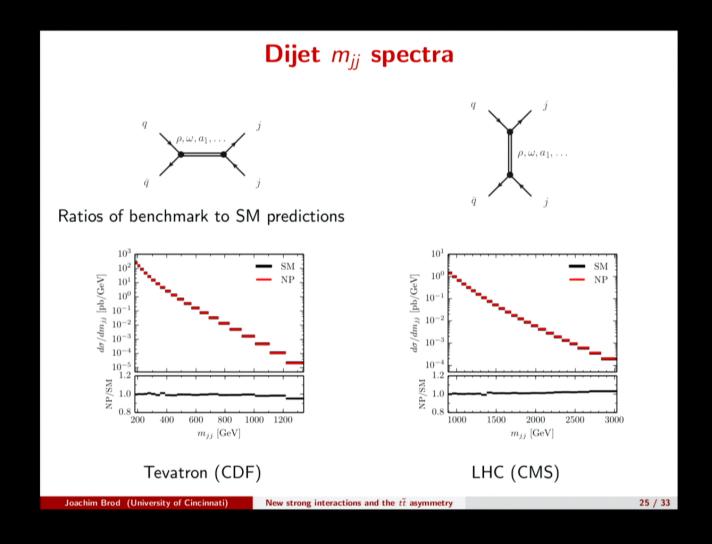

Our benchmark yields

$$A_C(7\text{TeV}) = 2.45\%$$
 (no associates) \rightarrow 1.37% $A_C(8\text{TeV}) = 2.39\%$ (no associates) \rightarrow 1.35%

Joachim Brod (University of Cincinnati)

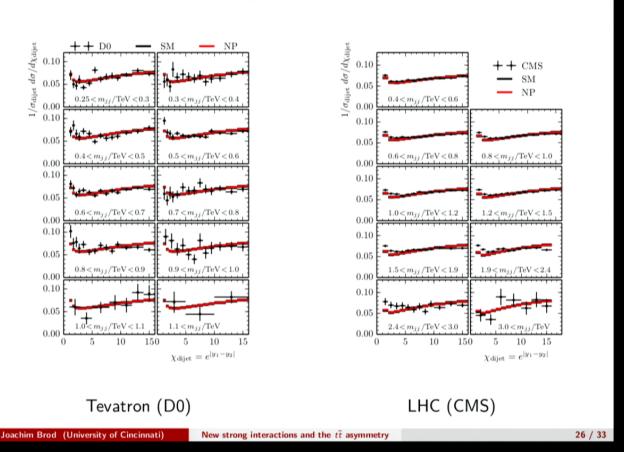
New strong interactions and the $t\bar{t}$ asymmetry

Differential $t\bar{t}$ cross section


$\sigma_{tar{t}}$	SM + NP	exp.
Tevatron	$6.38\pm0.54~\mathrm{pb}$	$7.50\pm0.48~\mathrm{pb}$
LHC (7 TeV)	176 ± 15 pb	$172.4 \pm 8.5~\text{pb}$
LHC (8 TeV)	$251\pm20~\text{pb}$	$234\pm 8~\text{pb}$

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry


24 / 33

Pirsa: 14050092 Page 25/34

Pirsa: 14050092 Page 26/34

Pirsa: 14050092 Page 27/34

CDF dijet pair constraints

- ullet CDF [arxiv:1303.2699] has bounds on $par p o X o YY o jj\,jj$
- ullet For $m_
 ho=177$ GeV, $m_\pi=62$ GeV, $\sigma(
 hoar
 ho o
 ho o\pi\pi o jj\,jj)pprox35$ pb

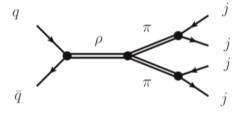
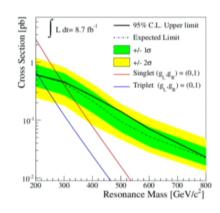


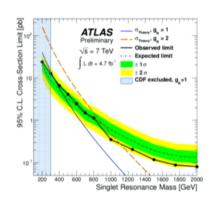
TABLE II: Observed and expected 95% C.L. upper limits on $\sigma(p\bar{p} \to X \to YY \to jj\ jj)$ for several values of m_Y and m_{X^*} . Also shown are theoretical predictions for axi-gluon production assuming coupling to quarks of $C_q = 0.4$ [5] \oplus].

m_X	m_Y	Expected	Observed	Axi-gluon
(GeV/c^2)	(GeV/c^2)	(pb)	(pb)	(pb)
150	50	641.2	431.1	5600
	70	209.6	270.6	
175 5	50	66.8	78.9	3500
	70	111.5	163.9	
200	50	13.8	9.5	2200
	70	30.4	91.5	
	90	17.8	100.4	
225 50	50	18.0	26.0	1750
	70	20.7	25.0	
	90	20.9	25.3	
250 5	50	6.2	2.0	1000
	70	4.0	3.6	
	90	5.1	2.8	


Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

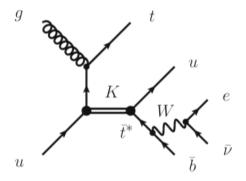
top – jet resonance searches


 K^*

CDF arxiv:1203.3894

$$egin{aligned} \sigma_{K*t} imes \mathsf{Br}_{K^* o ar{t}j} &= \mathsf{0.07}\,\mathsf{pb} \ \\ \sigma_{K_1t} imes \mathsf{Br}_{K_1 o ar{t}j} &= \mathsf{0.008}\,\mathsf{pb} \end{aligned}$$

ATLAS-CONF-2012-096


$$\sigma_{K*t} imes \mathsf{Br}_{K^* o \overline{t} j} = 4.4 \, \mathsf{pb}$$
 $\sigma_{K_1 t} imes \mathsf{Br}_{K_1 o \overline{t} j} = 0.8 \, \mathsf{pb}$

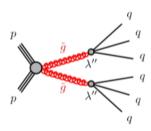
Joachim Brod (University of Cincinnati)

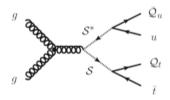
New strong interactions and the $t\bar{t}$ asymmetry

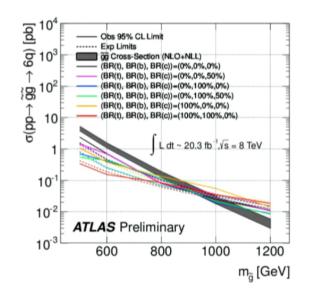
Associated *K* **production**

- Recall $M_K = 143 \, \text{GeV}$
 - ullet Contribution to single top + W production? $\sigma_{tW} < 1.7\,\mathrm{pb}$ (cf. $\sigma_{tW} = 16^{+5}_{-4}\,\mathrm{pb}$ [CMS, arxiv:1209.3489])
 - ullet Contribution to $\sigma_{tar{t}}$? $\sigma_{tar{t}} < 11\,\mathrm{pb}$ (cf. $\sigma_{tar{t}} = 239\pm13\,\mathrm{pb}$ [CMS, arxiv:1312.7582])
 - ⇒ Contributions smaller than current exp. error

Joachim Brod (University of Cincinnati)


New strong interactions and the $t\bar{t}$ asymmetry


29 / 33


Pirsa: 14050092 Page 30/34

Production of resonances @ LHC8

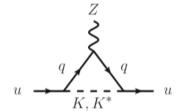
ATLAS-CONF-2013-091

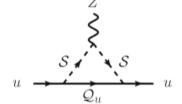
$$egin{aligned} \sigma(pp
ightarrow \mathcal{SS}^* &
ightarrow qar{q}\mathcal{Q}_qar{\mathcal{Q}}_q) pprox 0.18\,\mathrm{pb} \ \sigma(pp
ightarrow \mathcal{SS}^*
ightarrow qar{t}ar{\mathcal{Q}}_q\mathcal{Q}_t + ar{q}t\mathcal{Q}_qar{\mathcal{Q}}_t) pprox 0.6\,\mathrm{pb} \ \sigma(pp
ightarrow \mathcal{SS}^*
ightarrow tar{t}\mathcal{Q}_tar{\mathcal{Q}}_t) pprox 0.6\,\mathrm{pb} \end{aligned}$$

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

30 / 33


Pirsa: 14050092 Page 31/34


Electroweak precision data

 Contributions to atomic parity violation

[Gresham et al., arxiv:1203.1320]

(sub-)permil effects on effective couplings

- S is SU(2) singlet no contribution to S parameter
- Diagrams for T parameter cancel (see also [Grimus et al., arxiv:0711.4022])

 \bullet Shift in top Yukawa coupling $\lessapprox 1\%$ – below current experimental sensitivity

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

Possible signals

- K^* : $\bar{t}j$ resonances
- $K: \bar{t}^*j$ resonances
- π : $pp \rightarrow \rho\rho \rightarrow 4\pi$
- HC baryon is a dark matter candidate
 - Accidental Z₂ symmetry
 - \bullet Relic density is tiny, $\Omega_B\approx 10^{-8}\Omega_{DM}$
 - Direct detection cross section of order of LUX bound

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

32 / 33

Pirsa: 14050092 Page 33/34

Summary

- We constructed a model with many low-mass confining resonances
- Currently invisible at LHC
- However, can explain large Tevatron AFB

Joachim Brod (University of Cincinnati)

New strong interactions and the $t\bar{t}$ asymmetry

33 / 33

Pirsa: 14050092 Page 34/34