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Abstract: <span>Isolated, interacting quantum systems in the presence of strong disorder can exist in a many-body localized phase where the
assumptions of equilibrium statistical physics are violated. On tuning either the parameters of the Hamiltonian or the energy density, the system is
expected to transition into the ergodic phase. While the transition at "infinite temperature” as a function of system parameters has been found
numerically but, the transition tuned by energy density has eluded such methods.<br>In my talk | will discuss the nature of the many-body
localization-delocalization (MBLD) transition as a function of energy denisty in the quantum random energy model (QREM). QREM provides a
mean-field description of the equilibrium spin glass transition. We show that it further exhibits a many-body mobility edge when viewed as a closed
guantum system. The mean-field structure of the model alows an analytically tractable description of the MBLD transition. | will also comment on
the nature of the critical states in this mean-field model.<br>This opens the possibility of developing a mean-field theory of this interesting
dynamical phase transition.</span>
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Ergodic hypothesis in QM

Beweis des Ergodensatzes und des /A-Theorems
in der neuen Mechanik.

Von J. v. Nenmann in Berlin.
(Eingegangen am 10. Mai 1929.)

Es wird gezeigt, wie der scheinbare Widerspruch zwischen dem makroskopischen

Ansatz des Phascnraumes und dem Bestehen von Unbestimmtheitsrelationen anf-

zuliisen ist. Danach werden die bauptsiichlichsten Begriffsbildnngen der statistischen

Mechanik quantenmechanisch umgedeatet, der Ergodensatz und das J/-Theorem

formuliert und (ochne [ Unordonungsannahmen*) bewiesen. Es folgt eine Diskussion

des physikalischen Sinnes der ihren Giiltigkeitsbereich festlegenden mathematischen
Bedingungen.

Similar ideas from Wigner, Schrodinger, Pauli....

Translation: Tumulka, Eur. Phys. J. H 35, 201-237 (2010)

Commentary: Goldstein, Lebowitz, Tumulka, Zanghi, European Phys. J. H 35, 173 (2010)
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Many-body localization: A quintessential glass

Absence of Diffusion in Certain Random Lattices

« Can an isolated quantum system P. W. ANDERSON
serve as its own heat bath? Bell Telephone Laboratories, Murray Hill, N ew Jersey
(Received October 10, 1957)
- The system can locally exchange

. . - ligible; second, and probably more important, as an
energy/partlcles/spln with the rest of example of a real physical system with an infinite
the system. number of degrees of freedom, having no obvious

oversimplification, in which the approach to equilibrium
is simply impossible; and third, as the irreducible

N
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N
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« Many-body localization is the breakdown of ergodicity.

- The system freezes, retaining the memory of its initial conditions.
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Recent experimental developments

—

J. Billy et. al., Nature (2008)

Cold atomic systems are highly isolated
interacting systems. Absence of lattice
phonons which serve as a heat bath in
solid state systems

Interactions and disorder are tunable
parameters.
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Recent experimental developments

J. Billy et. al., Nature (2008)

Cold atomic systems are highly isolated
interacting systems. Absence of lattice
phonons which serve as a heat bath in
solid state systems

Interactions and disorder are tunable
parameters.

L. Childress et. al., Science (2006)
Guredev Dutt et. al., Science (2007)
N. Bar-Gill, Nature Communications (2012)

System with long coherence times due to
weak coupling to phonons.

High level of control of the local spin
degrees of freedom
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Single-particle localization
Hnnn—iun-r:u'tiug — Z tij (":{") = h-"-) T Z If:"j".-'

t.]
i € [-W, W] En

- Eigenstates in the absence of hopping L \/

are localized on individual sites.

e e o o o e e o o o e e o e o o o o o o
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Single-particle localization

§ , f E : f
Hnnn—iut:-r:u'ting — f:.; (f',f'\, T /I.f'.) -+ JLiC; Ci
!

- Eigenstates in the absence of hopping
are localized on individual sites.

« On tuming on hopping (1) weakly, at
strong disorder the perturbative
correction to the wavefunction is small.

- The delocalization is marked by the
proliferation of resonances as hopping
amplitude increases.
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Basko, Aleiner & Altshuler (BAA)
Annals of Physics (2006)

b o
Weakly interacting fermions in of

d-dimensions with quenched disorder. o
(Perturbation Theory)

- [Insulator«

Isolated system without an external bath.
(with electron-phonon coupling)

Pirsa: 14050078

Page 9/44



Basko, Aleiner & Altshuler (BAA)
Annals of Physics (2006)

. . . . A (1
* Weakly interacting fermions in }

d-dimensions with quenched disorder.
(Perturbation Theory)

- [nsulatore

* |solated system without an external bath.
(with electron-phonon coupling)

* No thermodynamic signatures, only a

e D.C. conductivity o(T)= 0 below energy dynamical transition

densities corresponding to a finite T_

(temperature well-defined only in the
metallic phase) - Phase transition.
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General line of reasoning of BAA

2 —
« All single-particle states are localized. |p(r)|? ~ e /% Va;B’YcS

= Interactions are short-ranged. Hamiltonian expressed
in terms of the localized orbitals

. e 1 . s
£ == E CxCrCa + = E V 2f75C € gCyCs 5
1 | —

Iff'.("
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General line of reasoning of BAA

2 —
« All single-particle states are localized. |p(r)|? ~ e /% Va;B’YcS

= Interactions are short-ranged. Hamiltonian expressed
in terms of the localized orbitals

. e 1 P
I == E CaxCrCa + = E V 2f75C 5 CgCyCs 6
= 2

1,;’. O
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General line of reasoning of BAA

2 —
« All single-particle states are localized. |p(r)|? ~ e /% VaB"YcS

= Interactions are short-ranged. Hamiltonian expressed
in terms of the localized orbitals

. 3 1 34
N == E GaCaCa —+ = E V 1,,-...,,-0;Cﬁc*._.c*,,~ 5
x = axfiyo

- Basis states of the Fock space represent the sites of
the N-dimensional hypercube (for N particles).

= The “interaction” produces hops along the edges of the
hypercube.
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General line of reasoning of BAA

2 —
« All single-particle states are localized. |p(r)|? ~ e /% Vaﬂ"yé

= Interactions are short-ranged. Hamiltonian expressed
in terms of the localized orbitals

. L 1 Y
H = E CaCyCax + 5 E V apysC,CpCyCs é—
x = xfiyo

- Basis states of the Fock space represent the sites of
the N-dimensional hypercube (for N particles).

= The “interaction” produces hops along the edges of the
hypercube.
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Eigenstate thermalization hypothesis

Deutsch, Phys. Rev A (1991), Srednicki, Phys. Rev. E (1994), M. Rigol et. al., Nature (2008)

A subsytem thermalizes as t—o and L—ee if < 7
/

N
o — ( I(H P N ) /
ps(t) — pS'(p,B) =Trg (e +IV') PR p—
. O s D
with the

initial energy density €(T) deciding the
temperature for arbitrary initial conditions.

p(t) = E Prmn (0 )e ~H{Em—En)t| (n|

m.n
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ocalization

.-ﬂ'. = 2 S, expl(i2mj/L)
J

{(n .‘.!::rﬂ(rr‘.‘.ll n)
(n|ﬁ‘f‘|!\-1, n)

fa =1—

= For nearest-neighbor interactions the many-body localization-delocalization (MBLD)
transition was numerically observed at infinite temperature (states in the middle of
the band) by tuning disorder strength.

Pal and Huse, PRB (2010)
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of “infinite temperature’

ization

—

.-ﬂ'. = 2 S, expl(i2my/L)
J

(n .‘.l:,rﬂ(n‘.‘.ll n)
(n|ﬁ‘f'|!\-1, n)

fa =1—

For nearest-neighbor interactions the many-body localization-delocalization (MBLD)
transition was numerically observed at infinite temperature (states in the middle of

the band) by tuning disorder strength.

- Evidence and properties of the transition tuned by energy density is unexplored.

Pal and Huse, PRB (2010)
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ocalization

M, =2 S exp(i2mj/L)
J

{(n .‘.!::rﬂ(n‘.‘.ll n)
(n|ﬁ.f‘|!\-1, n)

fa =1-—

= For nearest-neighbor interactions the many-body localization-delocalization (MBLD)
transition was numerically observed at infinite temperature (states in the middle of
the band) by tuning disorder strength.

- Evidence and properties of the transition tuned by energy density is unexplored.

Pal and Huse, PRB (2010)

Pirsa: 14050078 Page 19/44



ocalization

.-'fl. = 2 S, expl(i2mj/L)
J

(n .‘}:Erl)(rr‘.‘.ll n)
(n|J\‘!‘|!\q1, n)

fa =1-—

= For nearest-neighbor interactions the many-body localization-delocalization (MBLD)
transition was numerically observed at infinite temperature (states in the middle of
the band) by tuning disorder strength.

- Evidence and properties of the transition tuned by energy density is unexplored.

Pal and Huse, PRB (2010)

Pirsa: 14050078 Page 20/44



A selfconsistent theory of localization

R Abou-Chacrat, P W Andersonis§ and D J Thouless*¥

+ Department of Mathematical Physics, University of Birmingham, Birmingham, Bi5S 2TT

¥+ Cavendish Laboratory, Cambridge, England and Bell Laboratories, Murray Hill, New
Jersey, 07974, USA

»
= Single-particle localization on a Bethe lattice ,,'/'
. ) i °
provides a mean-field description. o _aé:.‘
' e ®
e o .
= No loops (high-volume growth space) but some \—4 o
.. . . o A_°®
features of the finite-dimensional problem can be g &N
captured in a controllable manner. *C e o
't—¢\>°
D
- -
-
L]
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Mean-field model for MBL

- Is there a mean-field description of the MBL transition?

= Mean field model for spin-glasses may be a possible candidate.

Laumann, Pal and Scardicchio, arXiv:1404.2276
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Mean-field model for MBL

- Is there a mean-field description of the MBL transition?

= Mean field model for spin-glasses may be a possible candidate.

* Quantum random energy model is the “simplest” mean-field model of a spin glass

N
H = E({6;})—T > &F

=1

l I'_"')
P(E) = ———e %
( m(

« E is the random energy term which assigns an energy to an Ising configuration of
spins chosen randomly from a Gaussian distribution. p—ee of p-body Ising

interaction. Z A s 2
g i, 7 .0y

= The transverse field produces hops along the edges of the hypercube.

Laumann, Pal and Scardicchio, arXiv:1404.2276
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Mean-field model for MBL

- Is there a mean-field description of the MBL transition?

= Mean field model for spin-glasses may be a possible candidate.

* Quantum random energy model is the “simplest” mean-field model of a spin glass

N
H = E({6;})—T>» &F

=1

L '

- E is the random energy term which assigns an energy to an Ising configuration of
spins chosen randomly from a Gaussian distribution. p—ee of p-body Ising

interaction. 2 2
> Aiyipoi, - -00,

.....

= The transverse field produces hops along the edges of the hypercube.

Laumann, Pal and Scardicchio, arXiv:1404.2276
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Thermodynamic phase diagram (I"=0)

n(FE) = 2V P(FE) ~ eNs(E/N)

s(€) = log2 — €2

Microcanonical

. E
. .\_
\ B

€0 — Jlll].{z

Derrida 1981
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Mean-field model for MBL

- Is there a mean-field description of the MBL transition?

= Mean field model for spin-glasses may be a possible candidate.

* Quantum random energy model is the “simplest” mean-field model of a spin glass

N
H = E({6;})—T>» &F

=1

l I'_"')
v TN

« E is the random energy term which assigns an energy to an Ising configuration of
spins chosen randomly from a Gaussian distribution. p—ee of p-body Ising

interaction. 2 2
> Aiyipoi, 00

.....

= The transverse field produces hops along the edges of the hypercube.

Laumann, Pal and Scardicchio, arXiv:1404.2276
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Thermodynamic phase diagram (I"=0)

n(F) = 2N P(E) ~ eNs(E/N)

s(€) = log2 — €2

Microcanonical

. E
. .\_
\ »

€0 —\/lng'.l

Derrida 1981
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Canonical phase diagram

tar Quantum h
1.2} PM |
Classical f=—Tlog(2coshl"/T)
e | PM i
o 1 |
- 0.8} f=—-rlng__—F
0.6 |
Classical

0.4 = “Glass" B
0.2k f=—Vieg2 |

0.0 - - | Il 1 \
0.0 0.2 0.4 0.6 0.8 1.0 1.2

1
Goldschmidt, PRB (1990)
Jorg, Krzakalal, Kurchan, Maggs, PRL (2008)
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Dynamical phase diagram

e
1%l Localized®, Ergodic Quantum

. PM
1.2} .

e . f = ~T log (2cosh I'/T)
1.01F N oT = ar

1
e 0.8} f=-Tlog2—- S.

0.6

Classical
0.4 = “Gl.””

0.2} f=-vioxz

0. ' : : - :
80 02 0.4 o6 08 1.0 1.2
-

Laumann, Pal and Scardicchio, arXiv:1404.2276
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The interactions in the QREM are
non-local but the z-magnetization

retains its locality.

Loca

z-magnetization

¢
[|H,o7]| =1 ~0O(1)
|H,o]| ~ O(N)

H=E{o}})—T>» of
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Local z-magnetization

The interactions in the QREM are
non-local but the z-magnetization
retains its locality.

In the ergodic phase difference in
local magnetization between
adjacent eigenstates is small

M(n) = (n|S5|n) = M(e,)

SN (n) dM (€) de

on de on

U

~ _‘!’(rlc N a(e)

In the localized phase this difference
remains of order 1

SM

- = (n + 1|S§|n + 1) — (n|S§|n) = O(1)
on

H = E({oi}) —T > o7

Il1H,o07]| =T ~ ()(1;
\[H,o7]| ~ O(N)
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Local z-magnetization

« The interactions in the QREM are
non-local but the z-magnetization
retains its locality.

« In the ergodic phase difference in
local magnetization between
adjacent eigenstates is small

M(n) = (n|S5|n) = M(e,)
ri.\{(n! . dM (€) f.if . _\!'(r)( N s(€)
on de on

« In the localized phase this difference
remains of order 1

SM

- = (n + 1|S5|n + 1) — (n|S;|n) = O(1)
orn
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H=E{o;})—T> of

lH,o07]| =T ~ ()(13
|[H,o7]| ~ O(N)

Page 34/44



Signature of the many-body mobility edge

(r2) - ) An+l) 1) An+1)
C . i . g — o DS ) /max{o.’. 0
- Spectral statistics diagnosis of MBL a min{ ¢ a > % b/ max{«¢ a * Ca J
(i:.” ) — l h"(‘” ) 14“( n—1)

- Ergodic phase has GOE level statistics: [r| ~ 0.53

- MBL phase has Poisson level statistics: [r] =~ 0.39

Laumann, Pal and Scardicchio, arXiv:1404.2276
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Signature of the many-body mobility edge

An) - An) n+l) ) n) n+1)
- Spectral statistics diagnosis of MBL ro’=min{5;". 5"}/ max{s;”. 5V}
(.;‘(.u ) e I l‘:‘(‘” ) h‘( n—1) |

- Ergodic phase has GOE level statistics: [r| ~ 0.53

- MBL phase has Poisson level statistics: [r] ~ 0.39

Change in spectral statistics with Delocalization at “infinite temperature’
energy density

e I I L) 1
|
mb s ol it e el Sl
oso | N " - - .
m
a
= oas | W : ™ R
m £
n *
0.40 e = 0 _
| ::l 1 L 1 L

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Laumann, Pal and Scardicchio, arXiv:1404.2276

Pirsa: 14050078 Page 36/44



Signature of the many-body mobility edge

(rn) . ) An+1) mn) n+1)

. . A ot 2 s s 5t 5

- Spectral statistics diagnosis of MBL "o min{ ¢ a > % F/ max{c a * % ;
(.,*j.r: ) — l f‘:’(‘” ) h*( n—1) |

- Ergodic phase has GOE level statistics: [r| ~ 0.53

- MBL phase has Poisson level statistics: [r] /&~ 0.39

Change in spectral statistics with Delocalization at “infinite temperature’
energy density

ey I I L) ]
- -t ==
=
oso |- N " - - _
L] -
= oas | W g - -
]| '
I .
0.40 ' e = () _

— e e e e e e e e e— e— —

| 1 L 1 1
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Laumann, Pal and Scardicchio, arXiv:1404.2276
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Perturbative estimate of mobility edge

« For an initial state localized on site a of the

hypercube, the amplitude on site b can be . - 1
expressed perturbatively as a sum over all Yp == 1 Z H E —E.
paths- Forward-scattering approximation peM,, iep = ¢ !

(neglect loops).

Altshuler, Gefen, Kamenev and Levitov, PRL (1997)
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Perturbative estimate of mobility edge

 For an initial state localized on site a of the

hypercube, the amplitude on site b can be . - 1
expressed perturbatively as a sum over all Yp = 1 Z H F — E.
paths- Forward-scattering approximation peM,, iep = ¢ !

(neglect loops).

« Given the amplitude at site n-1, the amplitude
at nis
I
'mn — T Wn—
L 5 1 —1

L g

« Condition for resonant-delocalization is when the probability to find a resonance as
n — N becomes 1

Altshuler, Gefen, Kamenev and Levitov, PRL (1997)
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MBLD transition at finite temperature

- At an extensive energy (E,= €N), resonances are rare and all paths add

democratically until a resonance is reached (neglecting correlations between
paths). s _E

N

l.
Uy’ —

n ’f_l

()

- {
O
— T
.-\”

Laumann, Pal and Scardicchio, arXiv:1404.2276
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MBLD transition at finite temperature

- At an extensive energy (E,= €N), resonances are rare and all paths add

democratically until a resonance is reached (neglecting correlations between
paths). 2 _E

N

I s(<)

t mn — "_l
i

E,

! L
e N E.l o r

- {
)n
- r:
On

* On estimating the probability for the resonance (N-—<) provides a critical value of I'.

) . | .
l,.:f+\/§f‘!+_—gf"+...

Laumann, Pal and Scardicchio, arXiv:1404.2276
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Delocalization at infinite temperature

= For an infinite temperature state in the middle of the band e
(e=0) resonances are much more likely.

« Consider paths going up to n steps and estimate the delocalization of the greediest
path amongst all possible end points.

Laumann, Pal and Scardicchio, arXiv:1404.2276
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Open questions

= Analytically tractable mean-field theory of the transition at finite energy density.

- Signatures of MBL in amorphous materials showing dynamical freezing.
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