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Abstract: <span>Topologica phases are often characterized by special edge states confined near the boundaries by an energy gap in the bulk. On
raising temperature, these edge states are lost in a clean system due to mobile thermal excitations. Recently however, it has been established that
disorder can localize an isolated many body system, potentially allowing for a sharply defined topologica phase even in a highly excited state.l will
show this to be the case for the topological phase of a one dimensional magnet with quenched disorder, which features spin one-half excitations at
the edges. The time evolution of a simple, highly excited, initial state is used to reveal quantum coherent edge spins. In particular, | will
demonstrate, using theoretical arguments and numerical simulation, the coherent revival of an edge spin over a time scale that grows exponentially
bigger with system size. This is in sharp contrast to the general expectation that quantum bits strongly coupled to a 'hot' many body system will
rapidly lose coherence.</span>
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an topological edge states survive at high energies

Integer spin chain Topological insulators

Rocveravaravaoct
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Kane and Mele 05,
Bernevig et. al. 06

Normally edge states are well defined only at T=0 !

At T>0 or finite energy density there is a finite density of
oulk excitations with which edge states can mix and decay.

Jnless all excitations are localized!
VWhat is the fate and dynamics of edge states in MBL states?
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Can a local quantum degree of freedom retain its
coherence (i.e. serve as a g-bit) when it is
embedded in a time evolving many-body system?
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‘L’\ f\\‘ &___: (_)’—'i,ffl, | \1—1()>

Naive answer: No, because of thermalization!
Once the time evolution thermalized the g-bit with its

This talk: Show that it is possible!

arbitrary energy density above its ground state.
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surroundings all quantum coherence would be lost from the g-bit.

Possible to retain local-coherence in a generic many-body system, at
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Outline

« ETH and its breaking in localized systems

* Is the localized state necessarily trivial?
Distinct loclaized states. Dynamical order

« Topological MBL states.
— Model with topological spin-1/2 edge states
— Dynamics of the edge state.
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Eigenstate thermalization hypothesis (ETH)

Deutsch 91, Srednicki 94
Generic eigenstates of a thermalizing system “appear” thermal

Reduced density-matrix of
a big subsystem A:

(......... L ......... }
1
- —BH 5 A
PA — &
Z A
In particular this implies
particu is impli SA ~ Ld

extensive Von-Neuman entropy:

Pirsa: 14050077 Page 6/30



Exception to ETH: many-body localization

Anderson localized eigenstates «—L—>

of non interacting particles: \V\/V‘Q/\/V\/\/\/\/

S 4 X -1
Such states can be stable to g 1\
interactions MBL

Delocalized

Conjectured by Anderson 1958;
Gornyi, Polyakov and Mirlin (2005),
Basko, Aleiner, Altshuler (2006);
Oganesyan & Huse 2007;

Pal & Huse 2010, ...

Localized

non thermalizing
—

Disorder strength

Define MBL as a state at finite energy density
with area law entanglement. Bauer&Nayak 2013, ...

Hiagh energy states with around state like properties!
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Localization protected quantum order
Huse et. al. (2013)

Ground state like entanglement properties enable quantum
“‘phases” in high energy eigenstates. 5
E

Distinct localized “phases” separated by
quantum critical points with universal
dynamics. (See Ronen'’s talk)

Glass

Paramagnet

>

Parameter in H

Similarly, MBL can even support
topological eigenstates!

Impossible to prepare energy eigenstates!
What are the dynamical signatures?
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Example: dynamics in a disordered Ising model

H=> [Jioio; +hiof + T olof, +...]

Wo) = dtos s dtilirirrititttitt ittt tit

Evolve with H and measure local spin

A
In the glass phase: (o7 (t)) — m; # 0 =
' Glass
Comes out naturally from RG Paramagnet
(Vosk & EA arXiv:1307.3256; see Ronen’s talk) >

« O, 's are emergent conserved quantities

Have non vanishing overlaps with true conserved quantities.
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Quasi-local integrals of motion
11() = Z ]},‘_()';-r
Hy = Z Jio7oi

Strictly-local conserved quantities transform smoothly
to quasi-local ones upon adding weak generic interactions

Oganesyan and Huse (2013), Serbyn, Papic & Abanin (2013)

——> H =Y [Jioio}, +hio! +Jfalal, +.. ]
d

Integrals of motion in Paramagnet:
Hy =Y hio} ol — 0] = Zo; + exponential tail

1 !

Integrals of motion in Glass:
Hy = Z Jioiob, o — o0 = Zo; + exponential tail

Important: in this example the integrals of motion are classical !
o; and 0; are not conserved at the same time
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Classical versus quantum integrals of motion

Integrals of motion in the last example are classical:

o; and o are not conserved at the same time.

Spins in the random Ising model can serve as
protected classical bits but not as g-bits

We need:

local conserved quantities, which can serve as quantum bits!
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Localization and topology protected
coherence at the edge of "hot” matter

Y. Bahri, R. Vosk, E.A. and A. Vishwanath arXiv:1307.4092

Can a local quantum degree of freedom
retain its coherence when it is embedded
In a time evolving many-body system?

(3_?:Ht | \IJ() >
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Digression: symmetry protected topological states
(usual ground state picture)

Example: spin-1 chains: H = Z S, Si1+A(S; S, H)2

Haldane 83, AKLT 87

Spin-1/2 edge states

« Bulk is gapped and invariant under the symmetry.
« Ground state degeneracy due to edges.
« Edge states transform non trivially under symmetry (projective rep.)

Pollmann, Turner, Berg, Oshikawa (2010); Chen, Gu, Wen (2011)

e.g. with spin symmetry:
microscopic constituents transform as spin-1 while edge
states transform as spin-1/2 ( proj. rep. of SO(3) )
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Digression: symmetry protected topological states
(usual ground state picture)

Integer spin chain Topological insulators

> ooaaaad ‘

Kane and Mele 05,
Bernevig et. al. 06

Normally edge states are well defined only at T=0 !

At T>0 or finite energy density there is a finite density of
bulk excitations with which edge states can mix and decay.

This can be avoided if all excitations are localized!
Can a localized state have topological character?
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Localized topological model with spin-1/2 edge states

H=3"|Noi ofoi, +hiof + Vieloly, | ZaxZy Sym.
".' Todd — ~Codd
V<<h,A needed to make the model generic. 7%y ot
If V=0 it can be mapped to free fermions
E A
Topological Trivial paramagnet

ecamacdd

(log |h/A)
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Topological state: Idealized “cluster” model

N—1 N-—1
Hideal = Z NiOi_ 1030741 = Z Al K, K] =0
f=2 1=2
Spectrum consists of all “Cluster states”. Vo) = |k, o KSY)

Labeled by K; eigenvalues +; = %1

K K, Ky E, = Z A KO
e T s SRR —

4 fold degenerate spectrum for open BC'!

Edge: Local edge operators transform between ¥7Y =00}
the degenerate states. Form spin-1/2 algebra. Y2 g2
L = 0]

(projective rep. of Z,x Z, )
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Eigenstate Order Parameters
(Also in fully interacting model)

1. String correlations: Ou(i,j) = (o7a?,, (ﬂ,{ _'f__}_z(r;,f_') o o%)

J

In each disorder realization: Oy (i, 5) = &1

Glass string order: W, = O3

2. Doubly degenerate entanglement spectrum
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Quasi local integrals of motion

Assuming many-body localization, local integrals
of motion transform smoothly to quasi-local ones

K,— K, =7ZK;,+... <
o S A wle' <
SOy 50— Zne 4

(Exponential tail)

edge x bulk —> ’é@éxﬁ

Z, x Z, symmetry is still realized projectively on the new edge

i~

E(\-‘ . . .
7, is a true quantum integral of motion.
All three spin components are conserved
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Persistence of the edge spin in dynamics

Practically we can observe only the strictly local operators 3¢

Can we see the conservation of the quasi-local edge spin X} ?

: V(Y E Y T
Use- LL :+ (f'N-LLB‘N-

Part of each component of the
edge spin is protected from decay.
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Persistence of the edge spin: exact diagonalization
(6 to 11 spins)

Prepare simple initial states (classical, high E):

W) @TT‘TT‘H ttoor |0 @mmmr*r

<Z;>() =1 !,>U =1
(}—HH. | \]l()>

1.2 (x,)1or EDGE1 |]
(x jfor EDGE 2
1 z |
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Decay of the edge spin is due to finite size

W)= "tHttrttrtttt Emﬁ

Interactions mediate coupling between edges: g = Jafye Bmi]*’{“,

“IIR" I
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Can the edge spin be manipulated coherently?

External field coupled to edge locally.
Breaks protecting symmetry!

Hodgo = (]EL

Leads to edge bulk coupling N . Y
in presence of interactions ~ UZEL T 9 Z cp27 B
! n

Decaylng oscillations

= Ml mu,'.lﬂﬂ M it oo

IJ
1 L L L L 1 J
AL "t.l__\l_.ll__l [SINININ PN NN U AL 1L

Can we retrieve the coherence In a spin echo ?
(applying strictly local operations)
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Edge spin echo protocol

Evolve to time t; with the Hamiltonian: H(g) = Hy + gX7

Reverse edge field at time tg and evolve to time 2ty with [ (—¢)

iy S
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Derivation of the edge echo: preliminaries

Basis of the quasi-local integrals of motion in presence of the field g:

@W {0, ko, Ry, ...} 9) = |0, a:9)

o %)

Simplification (for presentation):
as initial state take an eigenstate of y;* in presence of g (instead of ¥7 )

=~

[10g) = Z ColO, 0y g)

a, x

'(I;":"(?L[{)> _ Z ol n"13‘((‘7’\(‘}'.}';)!'“|(}1 (.i"': (}>

a,x

Evolve to the reversal time:
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Field reversal g to —g (local quench)

Evolution after quench at tg is simple in the basis: |7, (v; — @)

Basis change: T,0:q) = Zoalo,0;—g) + ...

Z og.a;—qglo,ag) ~ | — F (V. W ag2e%i/8 ) pitaa Fo(Vih)g?€/a idaa
Ty .} .l (8} ./

Only d.o.f within & of the edge are affected by changing the edge field
Incomplete orthogonality catastrophe due to localization!

< - & —>
Note: by symmetry Zoolg) =Z _5.a(—g) = [an.n-(,f})]*
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Final evolution (t; to 2t;) in field -g

O(tr)) = Z coe B E G )

l 0, (Y

‘;-‘(2/.!:)» ~ Z {_“Z(T“(. | E(a,0,9)+FE(o,06,—g)|tr |(J' & 7(}) + ...

T,y
~ Y CaZgae T B E9R|G G — g)
This is because by symmetry:
E(a,i,9) = EY(a)+ EY(a)eg+ EP(@)g* + ... = Eo(a,¢?) +ogE_ (&, ¢°)

Convert back to the original +g basis:

l“'(th’ ~ ‘O ‘d 1 ( AC ”! . (I q
r

Ty

<E} )I!n Z|(u

Observe finite long time
~ o~ A97E echo as long as we are in
the topological phase.

{l
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Edge spin echo: numerical result

H = Hl)llll{ + (/Zii, + q Z (‘u.iiBn g

Reversing the field should reverse the oscillations

Initial state (t=0) Echo (2tg)
1 >—a
Dephased state (tg)
| | —
0.5(| ]| | [ I
L
|1.
o
- ‘I | ! !
i
~o.sff (I ‘
' Field reversal 1
|
5000 IT 6000
|

) \ 1000 2000 3000 4000
TIME

Signal after field reversal

(also mirrored about the reversal time)

Decaying oscillations
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Summary of coherence times

g
Heage ® gZ%7 + 9 Y  aXi B, «mm&aé
n
10° _
. TGTIME
_ = FIT i
Degradation of the echo (T,) is 20| . T, TvE
exponentially long in system 0 o T, TIME . "
size L and matches exactly with S 10
the spin relaxation at zero field! 8 $ .
E 10’ , . .

8 0 1

9 1
SYSTEM SIZE L
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Can topological edge states survive at high energies

Integer spin chain Topological insulators

Kane and Mele 05,

Bernevig et. al. 06

Normally edge states are well defined only at T=0!

At T>0 or finite energy density there is a finite density of
bulk excitations with which edge states can mix and decay.
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Summary

 Many-body localized states can be topological

- Topology and localization combine to protect
quantum edge states at high energy.

« Simpler realizations with only 2-spin interactions? w

« High energy edge-bulk decoupling in 2d / 3d ?
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