Title: Quantum Quenches in Thermodynamic Limit
Date: May 12, 2014 10:30 AM
URL: http://pirsa.org/14050067
Abstract: Studies of the quantum dynamics of isolated systems are currently providing fundamental insights into how statistical mechanics emerges under unitary time evolution. Thermalization seems ubiquitous, but experiments with ultracold gases have shown that it need not always occur, particularly near an integrable point. Unfortunately, computational studies of generic (nonintegrable) models are limited to small systems, for which arbitrarily long times can be calculated, or short times, for which large or infinite system sizes can be solved. Consequently, what happens in the thermodynamic limit after long times has been inaccessible to theoretical studies. In this talk, we introduce a linked-cluster based computational approach that allows one to address the latter question in lattice systems. We provide numerical evidence that, in the thermodynamic limit, thermalization occurs in the nonintegrable regime but fails at integrability. A phase transition-like behavior separates the two regimes. $</$ span>

Quantum quenches in the thermodynamic limit

Marcos Rigol

Department of Physics
The Pennsylvania State University
Quantum Many-Body Dynamics
Perimeter Institute for Theoretical Physics
May 12, 2014

Relaxation dynamics after turning off a superlattice

MR, A. Muramatsu, and M. Olshanii, PRA 74, 053616 (2006).
MR, V. Dunjko, V. Yurovsky, and M. Olshanii, PRL 98, 050405 (2007).

Unitary dynamics after a sudden quench

If the initial state is not an eigenstate of \widehat{H}

$$
\left|\psi_{0}\right\rangle \neq|\alpha\rangle \quad \text { where } \quad \widehat{H}|\alpha\rangle=E_{\alpha}|\alpha\rangle \quad \text { and } \quad E_{0}=\left\langle\psi_{0}\right| \widehat{H}\left|\psi_{0}\right\rangle
$$

then a few-body observable O will evolve following

$$
O(\tau) \equiv\langle\psi(\tau)| \widehat{O}|\psi(\tau)\rangle \quad \text { where } \quad|\psi(\tau)\rangle=e^{-i \widehat{H} \tau / \hbar}\left|\psi_{0}\right\rangle
$$

What is it that we call thermalization?

$$
\overline{O(\tau)}=O\left(E_{0}\right)=O(T)=O(T, \mu)
$$

Width of the energy density after a sudden quench

Initial state $\left|\psi_{0}\right\rangle=\sum_{\alpha} C_{\alpha}|\alpha\rangle$ is an eigenstate of \widehat{H}_{0}. At $\tau=0$

$$
\widehat{H}_{0} \rightarrow \widehat{H}=\widehat{H}_{0}+\widehat{W} \quad \text { with } \quad \widehat{W}=\sum_{j} \hat{w}(j) \quad \text { and } \quad \widehat{H}|\alpha\rangle=E_{\alpha}|\alpha\rangle .
$$

The width of the weighted energy density ΔE is then

$$
\Delta E=\sqrt{\sum_{\alpha} E_{\alpha}^{2}\left|C_{\alpha}\right|^{2}-\left(\sum_{\alpha} E_{\alpha}\left|C_{\alpha}\right|^{2}\right)^{2}}=\sqrt{\left\langle\psi_{0}\right| \widehat{W}^{2}\left|\psi_{0}\right\rangle-\left\langle\psi_{0}\right| \widehat{W}\left|\psi_{0}\right\rangle^{2}}
$$

or

$$
\Delta E=\sqrt{\sum_{j_{1}, j_{2} \in \sigma}\left[\left\langle\psi_{0}\right| \hat{w}\left(j_{1}\right) \hat{w}\left(j_{2}\right)\left|\psi_{0}\right\rangle-\left\langle\psi_{0}\right| \hat{w}\left(j_{1}\right)\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right| \hat{w}\left(j_{2}\right)\left|\psi_{0}\right\rangle\right]}{ }^{N \rightarrow \infty} \sqrt{N}
$$

where N is the total number of lattice sites.

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

Description after relaxation (lattice models)

Hard-core boson (spinless fermion) Hamiltonian

$$
\hat{H}=\sum_{i=1}^{L}-t\left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1}+\text { H.c. }\right)+V \hat{n}_{i} \hat{n}_{i+1}-t^{\prime}\left(\hat{b}_{i}^{\dagger} \hat{b}_{i+2}+\text { H.c. }\right)+V^{\prime} \hat{n}_{i} \hat{n}_{i+2}
$$

Dynamics vs statistical ensembles

Nonintegrable: $t^{\prime}=V^{\prime} \neq 0$

MR, PRL 103, 100403 (2009), PRA 80, 053607 (2009), ...

Integrable: $t^{\prime}=V^{\prime}=0$

MR, Dunjko, Yurovsky, and Olshanii, PRL 98, 050405 (2007), . .

Description after relaxation (lattice models)

Hard-core boson (spinless fermion) Hamiltonian

$$
\hat{H}=\sum_{i=1}^{L}-t\left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1}+\text { H.c. }\right)+V \hat{n}_{i} \hat{n}_{i+1}-t^{\prime}\left(\hat{b}_{i}^{\dagger} \hat{b}_{i+2}+\text { H.c. }\right)+V^{\prime} \hat{n}_{i} \hat{n}_{i+2}
$$

Dynamics vs statistical ensembles

Nonintegrable: $t^{\prime}=V^{\prime} \neq 0$

MR, PRL 103, 100403 (2009), PRA 80, 053607 (2009), ...

Integrable: $t^{\prime}=V^{\prime}=0$

MR, Dunjko, Yurovsky, and Olshanii, PRL 98, 050405 (2007), ...

Description after relaxation (lattice models)

Hard-core boson (spinless fermion) Hamiltonian

$$
\hat{H}=\sum_{i=1}^{L}-t\left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1}+\text { H.c. }\right)+V \hat{n}_{i} \hat{n}_{i+1}-t^{\prime}\left(\hat{b}_{i}^{\dagger} \hat{b}_{i+2}+\text { H.c. }\right)+V^{\prime} \hat{n}_{i} \hat{n}_{i+2}
$$

Dynamics vs statistical ensembles

Nonintegrable: $t^{\prime}=V^{\prime} \neq 0$

MR, PRL 103, 100403 (2009), PRA 80, 053607 (2009), ...

Integrable: $t^{\prime}=V^{\prime}=0$

MR, Dunjko, Yurovsky, and Olshanii, PRL 98, 050405 (2007), . .

Eigenstate thermalization

Eigenstate thermalization hypothesis

[Deutsch, PRA 432046 (1991); Srednicki, PRE 50, 888 (1994).]

- The expectation value $\langle\alpha| \widehat{O}|\alpha\rangle$ of a few-body observable \widehat{O} in an eigenstate of the Hamiltonian $|\alpha\rangle$, with energy E_{α}, of a many-body system is equal to the thermal average of \widehat{O} at the mean energy E_{α} :

$$
\langle\alpha| \widehat{O}|\alpha\rangle=\langle\widehat{O}\rangle_{\mathrm{ME}}\left(E_{\alpha}\right) .
$$

MR, Dunjko, and Olshanii, Nature 452, 854 (2008).

Eigenstate thermalization

Eigenstate thermalization hypothesis

[Deutsch, PRA 432046 (1991); Srednicki, PRE 50, 888 (1994).]

- The expectation value $\langle\alpha| \widehat{O}|\alpha\rangle$ of a few-body observable \widehat{O} in an eigenstate of the Hamiltonian $|\alpha\rangle$, with energy E_{α}, of a many-body system is equal to the thermal average of \widehat{O} at the mean energy E_{α} :

$$
\langle\alpha| \widehat{O}|\alpha\rangle=\langle\widehat{O}\rangle_{\mathrm{ME}}\left(E_{\alpha}\right) .
$$

MR, Dunjko, and Olshanii, Nature 452, 854 (2008).

Time fluctuations and their scaling with system size

Relative differences (struct. factor) (G) P. Reimann, PRL 101, 190403 (2008).
$\delta N(\tau)=\frac{\sum_{k}\left|N(k, \tau)-N_{\text {diag }}(k)\right|}{\sum_{k} N_{\text {diag }}(k)}$
(G) Linden et al., PRE 79, 061103 (2009).
(N) Cramer et al., PRL 100, 030602 (2008).
(N) Venuti\&Zanardi, PRE 87, 012106 (2013).

Time fluctuations

Are they small because of dephasing?

$$
\begin{aligned}
\langle\hat{O}(t)\rangle-\overline{\langle\hat{O}(t)\rangle} & =\sum_{\substack{\alpha^{\prime}, \alpha \\
\alpha^{\prime} \neq \alpha}} C_{\alpha^{\prime}}^{\star} C_{\alpha} e^{i\left(E_{\alpha^{\prime}}-E_{\alpha}\right) t} O_{\alpha^{\prime} \alpha} \sim \sum_{\substack{\alpha^{\prime}, \alpha \\
\alpha^{\prime} \neq \alpha}} \frac{e^{i\left(E_{\alpha^{\prime}}-E_{\alpha}\right) t}}{N_{\text {states }}} O_{\alpha^{\prime} \alpha} \\
& \sim \frac{\sqrt{N_{\text {states }}^{2}}}{N_{\text {states }}} O_{\alpha^{\prime} \alpha}^{\text {typical }} \sim O_{\alpha^{\prime} \alpha}^{\text {typical }}
\end{aligned}
$$

Time average of $\langle\hat{O}\rangle$
$\overline{\langle\hat{O}\rangle}=\sum_{\alpha}\left|C_{\alpha}\right|^{2} O_{\alpha \alpha}$
$\sim \sum_{\alpha} \frac{1}{N_{\text {states }}} O_{\alpha \alpha} \sim O_{\alpha \alpha}^{\text {typical }}$
One needs: $O_{\alpha^{\prime} \alpha}^{\text {typical }} \ll O_{\alpha \alpha}^{\text {typical }}$
MR, PRA 80, 053607 (2009)

Finite temperature properties of lattice models

Computational techniques for arbitrary dimensions

- Quantum Monte Carlo simulations

Polynomial time \Rightarrow Large systems \Rightarrow Finite size scaling
Sign problem \Rightarrow Limited classes of models

- Exact diagonalization

Exponential problem \Rightarrow Small systems \Rightarrow Finite size effects
No systematic extrapolation to larger system sizes
Can be used for any model!

Numerical Linked Cluster Expansions

i) Find all clusters that can be embedded on the lattice

Bond clusters

Numerical Linked Cluster Expansions

i) Find all clusters that can be embedded on the lattice
ii) Group the ones with the same Hamiltonian (Topological cluster)
iii) Find all subclusters of a given topological cluster

No. of bonds	topological clusters
0	1
1	1
2	1
3	2
4	4
5	6
6	14
7	28
8	68
9	156
10	399
11	1012
12	2732
13	7385
14	20665

Numerical Linked Cluster Expansions

i) Find all clusters that can be embedded on the lattice
ii) Group the ones with the same Hamiltonian (Topological cluster)
iii) Find all subclusters of a given topological cluster
iv) Diagonalize the topological clusters and compute the observables
v) Compute the weight of each cluster and compute the direct sum of the weights

Numerical Linked Cluster Expansions

i) Find all clusters that can be embedded on the lattice
ii) Group the ones with the same Hamiltonian (Topological cluster)
iii) Find all subclusters of a given topological cluster
iv) Diagonalize the topological clusters and compute the observables
v) Compute the weight of each cluster and compute the direct sum of the weights

Numerical Linked-Cluster Expansions

Site clusters

No. of sites	topological clusters
1	1
2	1
3	1
4	3
5	4
6	10
7	19
8	51
9	112
10	300
11	746
12	2042
13	5450
14	15197
15	42192

Numerical Linked-Cluster Expansions

Heisenberg Model

MR et al., PRE 75, 061118 (2007).
B. Tang et al., CPC 184, 557 (2013).

Models and quenches

Hard-core bosons in 1D lattices at half filling ($\mu_{I}=0$)

$$
\hat{H}=\sum_{i=1}^{L}-t\left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1}+\text { H.c. }\right)+V \hat{n}_{i} \hat{n}_{i+1}-t^{\prime}\left(\hat{b}_{i}^{\dagger} \hat{b}_{i+2}+\text { H.c. }\right)+V^{\prime} \hat{n}_{i} \hat{n}_{i+2}
$$

Quench: $T_{I}, t_{I}=0.5, V_{I}=1.5, t_{I}^{\prime}=V_{I}^{\prime}=0 \rightarrow t=V=1.0, t^{\prime}=V^{\prime}$

Models and quenches

Hard-core bosons in 1D lattices at half filling ($\mu_{I}=0$)

$$
\hat{H}=\sum_{i=1}^{L}-t\left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1}+\text { H.c. }\right)+V \hat{n}_{i} \hat{n}_{i+1}-t^{\prime}\left(\hat{b}_{i}^{\dagger} \hat{b}_{i+2}+\text { H.c. }\right)+V^{\prime} \hat{n}_{i} \hat{n}_{i+2}
$$

Quench: $T_{I}, t_{I}=0.5, V_{I}=1.5, t_{I}^{\prime}=V_{I}^{\prime}=0 \rightarrow t=V=1.0, t^{\prime}=V^{\prime}$
Convergence of E^{DE} with l

$$
\begin{aligned}
& \text { NLCE with maximally } \\
& \text { connected clusters } \\
& \quad(l=18 \text { sites })
\end{aligned}
$$

Energy: $E^{\mathrm{DE}}=\operatorname{Tr}\left[\hat{H}^{\hat{\rho}^{\mathrm{DE}}}\right]$
Convergence:
$\Delta\left(\mathcal{O}^{\text {ens }}\right)_{l}=\frac{\left|\mathcal{O}_{l}^{\text {ens }}-\mathcal{O}_{18}^{\text {ens }}\right|}{\left|\mathcal{O}_{18}^{\text {ens }}\right|}$

Models and quenches

Hard-core bosons in 1D lattices at half filling ($\mu_{I}=0$)

$$
\hat{H}=\sum_{i=1}^{L}-t\left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1}+\text { H.c. }\right)+V \hat{n}_{i} \hat{n}_{i+1}-t^{\prime}\left(\hat{b}_{i}^{\dagger} \hat{b}_{i+2}+\text { H.c. }\right)+V^{\prime} \hat{n}_{i} \hat{n}_{i+2}
$$

Quench: $T_{I}, t_{I}=0.5, V_{I}=1.5, t_{I}^{\prime}=V_{I}^{\prime}=0 \rightarrow t=V=1.0, t^{\prime}=V^{\prime}$
Convergence of E^{DE} with l

$$
\begin{aligned}
& \text { NLCE with maximally } \\
& \text { connected clusters } \\
& \quad(l=18 \text { sites })
\end{aligned}
$$

Energy: $E^{\mathrm{DE}}=\operatorname{Tr}\left[\hat{H}^{\hat{\rho}^{\mathrm{DE}}}\right]$
Convergence:
$\Delta\left(\mathcal{O}^{\text {ens }}\right)_{l}=\frac{\left|\mathcal{O}_{l}^{\text {ens }}-\mathcal{O}_{18}^{\text {ens }}\right|}{\left|\mathcal{O}_{18}^{\text {ens }}\right|}$

Dispersion of the energy in the DE

Dispersion of the energy
$\Delta E^{2}=\frac{1}{L}\left(\left\langle\hat{H}^{2}\right\rangle-\langle\hat{H}\rangle^{2}\right)$

The dispersion of the energy (and of the particle number) in the DE depends on the initial state independently of whether the system is integrable or not.

Few-body experimental observables in the DE

Momentum distribution

$$
\hat{m}_{k}=\frac{1}{L} \sum_{j j^{\prime}} e^{i k\left(j-j^{\prime}\right)} \hat{\rho}_{j j^{\prime}}
$$

Differences between DE and GE
$\delta(m)_{l}=\frac{\sum_{k}\left|\left(m_{k}\right)_{l}^{\mathrm{DE}}-\left(m_{k}\right)_{18}^{\mathrm{GE}}\right|}{\sum_{k}\left(m_{k}\right)_{18}^{\mathrm{GE}}}$

Few-body experimental observables in the DE

Momentum distribution

$$
\hat{m}_{k}=\frac{1}{L} \sum_{j j^{\prime}} e^{i k\left(j-j^{\prime}\right)} \hat{\rho}_{j j^{\prime}}
$$

Differences between DE and GE
$\delta(m)_{l}=\frac{\sum_{k}\left|\left(m_{k}\right)_{l}^{\mathrm{DE}}-\left(m_{k}\right)_{18}^{\mathrm{GE}}\right|}{\sum_{k}\left(m_{k}\right)_{18}^{\mathrm{GE}}}$

Few-body experimental observables in the DE

Momentum distribution

$$
\hat{m}_{k}=\frac{1}{L} \sum_{j j^{\prime}} e^{i k\left(j-j^{\prime}\right)} \hat{\rho}_{j j^{\prime}}
$$

Differences between DE and GE
$\delta(m)_{l}=\frac{\sum_{k}\left|\left(m_{k}\right)_{l}^{\mathrm{DE}}-\left(m_{k}\right)_{18}^{\mathrm{GE}}\right|}{\sum_{k}\left(m_{k}\right)_{18}^{\mathrm{GE}}}$

Conclusions

- NLCEs provide a general framework to study the diagonal ensemble in lattice systems after a quantum quench in the thermodynamic limit.
- NLCE results suggest that few-body observables thermalize in nonintegrable systems while they do not thermalize in integrable systems.
- As one approaches the integrable point DE-NLCEs behave as NLCEs for equilibrium systems approaching a phase transition. This suggests that a transition to thermalization may occur as soon as one breaks integrability.

