Title: Polycrystalline On-Lattice Kinetic Monte Carlo Simulations of Electrodeposition

Date: May 07, 2014 03:30 PM

URL: http://pirsa.org/14050055

Abstract: The effects of the microstructure of metal films on device performance and longevity have become increasingly important with the recent advances in nanotechnology. Depending on the application of the metal films and interconnects certain microscopic structures and properties are preferred over others. A common method to produce these films and interconnects is through electrodeposition. As with every process the ability to control the end product requires a detailed understanding of the system and the effect of operating conditions on the resulting product. To address this problem a three-dimensional on-lattice kinetic Monte Carlo (KMC) method is developed to conduct atomistic simulations of polycrystalline metal electrodeposition. The method utilizes the highly descriptive embedded-atom method (EAM) potential to accurately describe the interatomic interaction energy. The EAM potential is a semi-empirical multi-body potential that accounts for the cohesive forces in a metallic system. Its parameters are determined from known experimental data.In the presented study kinetically controlled copper electrodeposition onto polycrystalline copper under potentiostatic conditions is modeled using the aforementioned KMC method. Two plating modes are considered: direct current and pulsed-plating. Three surface processes are considered during electrodeposition dissolution and surface diffusion. In addition to the surface processes at the atomic level over long time scales on the order of seconds. The computational requirement of these serial KMC simulations are a fraction (hours versus days) of that required by the parallel molecular dynamics (MD) approach to simulation of lectrodeposition processes over the much shorter time scales on the order of nanoseconds. Consequently this KMC method allows for the simulation of electrodeposition processes over the scales that are experimentally-relevant and not feasible using MD.

Introduction

Introduction

- Certain microscopic structures and interfaces are desired in electrodeposition.
- There is a need to accurately predict operating conditions that will lead to these structures.
- Simulation-based research is an important approach to this problem.
 - Modeling both nanoscale crystal morphology and process dynamics.
 - Capturing the behavior in the bulk.

http://materials.usask.ca/photos/

T. Treeratanaphitak (University of Waterloo)

KMC Simulations of Electrodeposition

May 7, 2014 2 / 18

Introduction

Introduction

- Certain microscopic structures and interfaces are desired in electrodeposition.
- There is a need to accurately predict operating conditions that will lead to these structures.
- Simulation-based research is an important approach to this problem.
 - Modeling both nanoscale crystal morphology and process dynamics.
 - Capturing the behavior in the bulk.

http://materials.usask.ca/photos/

T. Treeratanaphitak (University of Waterloo)

KMC Simulations of Electrodeposition

May 7, 2014 2 / 18

Background

On-Lattice Kinetic Monte Carlo

- KMC involves coarse-graining in time and space (on-lattice approximation)
- On-lattice approximation assumes that atoms vibrate about specific locations (minimum in potential energy)
- To move from one minimum to another – need to overcome energy barrier
- Location of metal atoms is restricted to sites on crystal lattice
- In KMC, the microscopic state of the system is only a function of position and time

T Treeratanaphitak (University of Waterloo) KMC Simulations of Electrodeposition

May 7, 2014 5/18

an

Background

Embedded-Atom Method

- Semi-empirical multi-body potential based on quantum DFT calculations
- Parameters are obtained from fitting DFT calculations to known parameters of metal
- Embedding term (cohesive energy) + pair-wise repulsion term

$$E_i = F\left[\rho_i\right] + \frac{1}{2} \sum_{\substack{j \\ i \neq j}} \phi_{ij}(r_{ij}), \qquad \qquad \rho_i = \sum_{\substack{j \\ i \neq j}} \rho_h(r_{ij})$$

(M. S. Daw, M. I. Baskes (1984) Phys. Rev. B)

T. Treeratanaphitak (University of Waterloo)

KMC Simulations of Electrodeposition

May 7, 2014 6 / 18

Table: Propensity	functions for the possible events in polycrystalling	e simulations		
Mechanism	Propensity Function			
Deposition	$\Gamma_{i,dep} = \frac{l_{Cu}^0}{z e n_{dep}} \exp\left(-\frac{\alpha_c \eta}{k_B T}\right) \frac{\Delta^{\downarrow} E_i}{\Delta^{\downarrow} E_{avg}}$			
Dissolution	$\Gamma_{i,diss} = \frac{i_{Cu}^0}{z e n_{diss}} \exp\left(\frac{\alpha_a \eta}{k_B T}\right) \left(2 - \frac{\Delta E_i^{\uparrow}}{\Delta^{\uparrow} E_{avg}}\right)$			
Diffusion	$\Gamma_{i,diffusion} = \begin{cases} \nu \exp\left(-\frac{E_d}{k_BT}\right) & \Delta E \le 0\\ \nu \exp\left(-\frac{E_d + \Delta E}{k_BT}\right) & \Delta E > 0 \end{cases}$			
C Treeratanaphitak (University of	Waterloo) KMC Simulations of Electrodeposition	May 7, 2014 9/18	1	
				AND

Methodology

Methodology – Representation of a Polycrystalline System

• Coordinates of each grain are based on (100) reference coordinates

$$\mathbf{x}_i' = \mathbf{R}\mathbf{x}_i + \mathbf{T}_i$$

• Sites can overlap, but vacant sites will be inhibited

	Condusion		
Conclusions			
experimentally relevant of	eposition rates and temperatures.		
 Propensity scaling allow in deposition kinetics. 	s for surface energy to be accurately taken into account		
 Roughness-time relation 	ship predicted by KMC-EAM is in agreement with		
experimental results wh	en the domain size is larger than the critical domain size.		
T Treeratanaphitak (University of Waterico)	KMC Simulations of Electrodeposition May 7, 2014 16 /	18	
		A DESCRIPTION OF THE OWNER OW	
			CR.A
	· · · · · · · · · · · · · · · · · · ·		

