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Abstract: <span>Consider discrete physics with a minimal time step taken to be<br> tau. A time series of positions q,9',q", ... has two classical<br>
observables: position (g) and velocity (g-g)/tau. They do not commute,<br> for observing position does not force the clock to tick, but
observing<br> velocity does force the clock to tick. Thus if VQ denotes first observe<br> position, then observe velocity and QV denotes first
observe velocity,<br> then observe position, we have<br> VQ: (q'-g)g/tau<br> QV: q'(q-g)/tau<br> (since after one tick the position has moved
from q to q).<br> Thus [Q,V]= QV - VQ = (q-g)*2/tau. If we consider the equation<br> [Q,V] = k (a constant), then k = (g'-g))*2/tau and this is
recognizably<br> the diffusion constant that arises in a process of Brownian motion.<br> Thus, starting with the simplest assumptions for discrete
physics, we are<br> |ead to recognizable physics. We take this point of view and follow it<br> in both physical and mathematical directions. A first
mathematical <br> direction isto see how i, the square root of negative unity, is related<br> to the ssimplest time series: ..., -1,+1,-1,+1,... and making
the<br> above analysis of time series more algebraic leads to the following<br> interpetation for i. Let e=[-1,+1] and €=[+1,-1] denote, as
ordered<br> pairs, two phase-shifted versions of the aternating series above.<br> Define an operator b such that eb = be' and b*2 = 1. Regard b asa
time<br> shifting operator. The operator b shifts the alternating series by one<br> half its period. Regard € = -e and e€' = [-1.-1] = -1 (combining
term by<br> term). Then let i = eb. We have ii = (eb)(eb) = ebeb = ee'bb = -1. Thus ii = -1<br> through the definition of i as eb, a temporally
sensitive entity that<br> shifts it phase in the course of interacting with (a copy of) itself.<br> By going to i as a discrete dynamical system, we can
come back to the<br> general features of discrete dynamical systems and look in a new way at<br> the role of i in quantum mechanics. Note that
the i we have constructed is<br> already part of a simple Clifford algebra generated by e and b with<br> ee = bb = 1 and eb + be = 0. We will
discuss other mathematical physical<br> structures such as the Schrodinger equation, the Dirac equation and the<br> relationship of a simple
logical operator (generalizing negation) with<br> Majorana Fermions.</span>

Pirsa: 14050032 Page 1/47



Physics, Logic and Mathematics of Time

Louis H. Kauffman (kauffman®@uic.edu)

Pirsa: 14050032

Page 2/47




God Does Not Play Dice! Here 1s a little story about the square root of minus one and quantum
mechanics. God said - I would really like to be able to base the universe on the Diffusion Equation
O[Ot = KDY JOx=.

But I need to have some possibility for interference and waveforms. And it should be simple. So

I will just put a “plus or minus™™ ambiguity into this equation, like so:

EOR) Ot = RO JOx*.
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This 1s good. but it 1s really terrible. I do not play dice. The -+ coefficient will have to be lawful.
not random. Nothing is random. What to do? Aha! I shall take -+ to mean the alternating
sequence

=i — 4 — 4+ — +

and time will become discrete. Then the equation will become a time series
Uy = ( l]'».‘(t',(.r dr) 2 (x) + Yy (x + dx))
where
Y, = Yy (x — dx) — 29 (x) + Yy (x + dx).
This will do 1it, but I have to consider the continuum limait, and there, there 1s no meaning to

(—1)"

in the realm of continuous time. What do do? Ah! In the discrete world my wave function (not a
bad name for it!) divides into . and v, where the time 1s either even or odd. So I can write

‘ P4
o, = KOZY o
and

. 2
Ny, = —RI Y.

o

I will take the continuum limit of ¢, and ¢, separarely!
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Finally! A use for that so called imaginary number that Merlin has been bothering me with
(You might wonder how Merlin could do this when I have not created him yet, but after all I am
that am.). This ¢ has the property that i = —1 so that

t(A+:1B)=1iA B.

7 == 1 .4'

and so you see thatif i = 1 then: = —1,and if « = —1 then 7 = 1. So 7 just spends its time
oscillating between +1 and — 1, but it does it lawfully and so I can regard it as a definition that

t = =+1]1.

(In fact, I can see now what Merlin what getting at. When I multiply 7z = (£1)(+1), I get —1
because the 7 takes a little time to oscillate and so by the time this second term multiplies the first
term, they are just our of phase and so we get either (+1)(—1) = —lor (—1)(+1) = —1. Either
way. ¢z = — 1 and we have the perfect ambiguity.) Heh. People will say that I am playing dice.
but it 1s just not so. Now 41 behaves quite lawfully and I can write the true equation of the World

= . + 1o,

¢

1 'I,/’t')f = KO? L 'I/’r').r'").

I shall call this the Schroedinger equation. Now I can rest on this seventh day before the real
creation. This is the imaginary creation.
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Discrete Measurement is
Intrisically Non-commutative.

Time Series: X, X', X7, ..
Derivative: X = (X -X)/dt = dX/dt

Here dt and dX are finite increments.
X)’(: Observe )'( then observe X.

XX: Observe X, then observe X.
XX = X' (X’-X)/dt
XX = (X'-X)X/dt
XX - XX = (X’-X)(X’-X)/dt
[X,X] = (dX)2/dt
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XX - XX = (X-X)(X’-X)/dt
[X.X] = K then K = (dx)(dx)/dt
X' = X + dx

The discrete analog of
Heisenberg’'s equation yields
a Brownian walk with diffusion
constant K.
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Recalling the Diffusion Constant
and the Diffusion Equation

x-dx X X+dx

P(x,t) = Probability that the particle is at x at time t.
P(x,t+dt) = (1/2)[P(x+dx,t) + P(x-dx,t)] ,whence
P(x,t+dt) - P(x,t) = (1/2)[P(x+dx,t) - P(x,t) -(P(x,t) - P(x+dx,t))]
dP/dt = (K/2) d 2 P/dx2 Diffusion Equation
K= (dx)2/dt Diffusion Constant

We have just seen the diffusion constant arise
differently(!) in the context of discrete process
commutators, with no second difference.
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Discrete calculus is embedded in
commutator calculus:

X is a signal to time-shift

the algebra to its left.

Make algebraic by defining
new operator | with
X] = JX".
o Redefine
X =X - X)/dt.
Then X = (X] - JX)/dt = [X, J/dt].

>.( satisfies the Leibniz rule.
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Embed Discrete Calculus in
Non-Commutative Calculus.

f(x) = f(x + h)

Df = (f — f)/h  Discrete derivative
D(fg) = D(f)g + fD(g) Pseudo Leibniz rule
fJ = Jj': Introduce Shift Operator

V(f) = JD(f) Redefine Derivative

V(fg) =JD(f)g+ JfD(g) = JD(f)g+ fJD(g) =V (f)g+ fVI(g)
V(f)=(Jf—Jf)/h = (fJ —Jf)/h = [f, J/R]

Leibniz Rule is restored, and
new derivative is a commutator.
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Emergence of the Diffusion Constant

Thus we can interpret the equation
(X, X] = Jk
(kA a constant scalar) as
(X' — X)) = k.
This means that the process is a Brownian walk with spatial step
A= xVkT
where A is a constant. In other words, we have
k= A%/T.

We have shown that a Brownian walk with spatial step size A and time step
7 will satisfy the commutator equation above exactly when the square of the
spatial step divided by the time step remains constant. This means that a
given commutator equation can be satisfied by walks with arbitrarily small
spatial step and time step, just so long as these steps are in this fired ratio.
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Heisenberg/Schrodinger Equation. Here is how the Heisen-
berg form of Schrodinger's equation fits in this context. Let the
time shift operator be given by the equation J = (1 + HAt/ih).
Then the non-commutative version of the discrete time deriva-
tive 1s expressed by the commutator
Vi = [1 ', .]{/f_\f].
and we calculate
Vi =¢[(1 + HAt/ih)/At) — [(1 + HAt/ih) /Aty = [, H]/ih,
th N v = |¢' ’, [[].

This 1s exactly the Heisenberg version of the Schrodinger equa-
t1011.
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The Heisenberg Commutator
[x,(Dx)] = J (AX)Z2/At
which we will simplify to
[Q, P/m] = (AX)Z2/At.

taking q for the position X and p/m for velocity, the time derivative
of position.

Understanding that At should be replaced by iAt, and that

(Ax)2/At = B/m, (at Planck length and time)
we have
(4@, p/m] = (AX)2/iAt = -i h/m
whence

[p.q] = ik~
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A non-commutative world of
flat coordinates

suitable for advanced calculus.
The flat coordinates X,; satisfy the equations below with the P,

g chosen to
represent differentiation with respect to X;:

X, X,] = 0. Coordinates Commute.

(7, PP;] = 0, Partials commute.

(X, ;] = 0;;. Derivative formula.

Derivatives are represented by commutators.
(-:)jF == ()F/()_\F, — [F P,]
O F = OF /0P, = [X,, F).

Temporal derivative is represented by commutation with a special (Hamilto-
nian) element H of the algebra:

dF/dt = |[F, H].

(For quantum mechanics, take ihdA/dt = [A, H].)
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If Q. P] =1 OF/OCQ = [F. P]

E = [F, H] OFJOP = [Q. F]

Then
P=[P.H = —[H.P] = —0H/9Q
Q= [Q,H] =0H/OP

Hamilton’s Equations
follow from non-
commutative calculus.
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Hamilton’s Equations express the
Mathematics of a Non-Commutative

Flat World.

AP /dt = [P, H) = —[H,P)] = —0H/DX,

AdX,/dt = |X,. H| = OH/OP,.

These are exactly Hamilton's equations of motion. The
of Hamilton’s equations is built into the systen.

» pattern
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One can explore formulations of discrete
physics in non-commutative context.
We will not go further with this in the present slide show.

The context of non-commutative calculus where the
derivatives are represented by commutators is directly
related to physics in a new way by this translation of the
discrete. This also suggests opening the books again on the
relationship of commutators and quantum theory.
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We now examine how elements of matrix algebra
can be seen as discrete dynamical systems. Thus
Time and Algebra are intertwined as Hamilton

knew.

This part is motivated by G. Spencer-Brown’s
invention of a ‘logical particle’ that interacts with
itself to either confirm itself or to cancel itself.
This interaction, combined with recursion, leads both
to matrix algebra and the very elementary mathematics
of a Majorana Fermion.
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In Laws of Form (G. Spencer-Brown)
Negation emerges from an operator that interacts
with itself either to annihilate itself, or to produce

itself.

.

- 11T

The Mark is a “‘logical particle” for a level of logic
deeper than Boolean Logic.
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A Very Elementary Particle -

Fusion Rules for a Majorana Fermion

P P

P p

P

The “particle’” P interacts with P
to produce either P or *
The particle * is neutral.
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Formally, we can distinguish
the two interactions via
adjacency and concentricity.

Pirsa: 14050032

Page 22/47




And From Logic Alone?
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Note that we have shown how the formalism of the
mark, as logical particle is coherent with its interpretation
as a Majorana Fermion.

O o Q O

OO = O O
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Ludwig Wittgenstein

Tractatus Logico-Philosophicus

4.0621 That, however, the signs “p”" and “~p” can say the same thing is
important, for it shows that the sign “~” corresponds to nothing
in reality.

5.511 How can the all-embracing logic which mirrors the world use
such special catches and manipulations?” Only because all these
are connected into an infinitely fine network, to the great mirror.

5.6 The limits of my language mean the limits of my world.
5.632 The subject does not belong to the world but it is a limit of the
world.
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The Bare Bones of a Majorana
Fermion from Logic Alone?

~~Q = Q in Boolean logic.

Can we write

i ?

——

Can negation interact
with itself to produce
Nothing (as above)?

Can negation interact
with itself to produce itself?
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In Laws of Form (G. Spencer-Brown)
Negation emerges from an operator that interacts
with itself either to annihilate itself, or to produce

itself.

.

- 11T

The Fibonacci particle is a “logical particle” for a level
of logic deeper than Boolean Logic.
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Fibonacci
Model

T

0 = — A% — A2
A=06=(1+Vb)/2.

- (s ) -

Braid Representations
Dense in Unitary
Groups

_ ei'n'z/ >

Tt
bass 4

AN

T
7

$ Forbidden

\_

/7 J=-U
—T

. —AT 0 it 0
k= ( 0 A8 ) - ( 0 —e27i/5

) - Temperley Lieb
/ Representation of
Fibonacci Model
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The Fibonacci Model yields a braid group
representation that is universal for quantum
computation. It is a braid group representation
that is dense in the unitary groups.

The structure of this representation is also
theoretically realized in the present models of
the quantum Hall effect.
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THE SQUARE ROOT OF MINUS
ONE IS A CLOCK.

From G= G|to I = -1/i.

i as an imaginary value,
defined in terms of itself.

i= -1/ ii= -1

The square root

of minus one
uisﬂ
a discrete oscillation.

O o I R o IR IR o IR I

N\

[-1.+1] [+1.-1]
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We introduce a remporal shift operator 1 such that
[a, bln = nlb, a
and
nn =1

for any iterant [a, b, so that concatenated observations can include a time step of one-half period
of the process

. HI)(I"HI!JI’I!J "o,

We combine iterant views term-by-term as in
la, b][e, d] = [ae, bd].

We now define 1 by the equation
= [l , —1 ] 7.
This makes 7 both a value and an operator that takes into account a step in time.

We calculate

it = [1, —1]n[1, —1]n = (1, —1][—1,1]mm = [—1, —1] = —1.
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< (1, —1]
('2—[1.'1} = ]
en = |1, —1|n = [—1,1|n = —en.
e’ =1,
n° =1
en = —ne.
it = (1, —1|n|l, —1|n = (1, —1]|[—1, 1]y = [—1, —1] = —1.
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[a.b] + [c,d]N <@— ;

ONER

[et A = [a,b] and B = [c,d] andletC = [r,s], D = [t,u]. With
A' = [b,a], we have

(A + Bn)(C+Dn) = (AC + BD'") + (AD + BC")n).

This writes 2 X 2 matrix algebra in the form of a hypercomplex
number system. From the point of view of iterants, the sum

[a,b] + [b,c]n can be regarded as a superposition of twwo types of
observation of the iterants I{a,b} and I{c,d}. The operator-view
[c,d]n includes the shift that will move the viewpoint from

[c,d] to [d,c], while [a,b] does not contain this shift. Thus a shift
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The Creation/Annihilation algebra for a
Majorana Fermion is very simple.
Just an element a with aa =1.
If there are two Majorana Fermions, we have
a,b
with aa = |, bb=1 and
ab +ba = 0.
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Majorana Fermions are their
own antiparticles.

Mathematically an Electron’s creation and annihilation

operators are

combinations of Majorana Fermion operators:

U=a+ib and U¥*=2a-ib
where ab+ba = 0 and aa =bb=1.

Note UU = (a+ib)(a+ib) = aa -bb +i(ab + ba) = 0
and U*U* = 0.

UyU* +U*yY = (U + U’*‘)(U+U’*‘) = 433 = 4

This is (unnormalized) creation/annihilation algebra for

an electron.
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A row of n electrons can be regarded as a row of 2n
Majorana Fermions.

Recent work suggests that Majorana Fermions
can be detected in nanowires.
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Majorana (real) Fermions

J ./ Usual (complex) fermions

w=(f"+f)/J2 wp wy=y oy’ =1

“"half” of the usual (complex) fermion

J =W, +iy,)/ \/E “real” fermion

er pai

¥,.¥>\v  Single fermion = 1 g-bit
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It is worth noting that a triple of Majorana fermions say a, b, ¢ gives rise to a representation
of the quaternion group. Tlu% 1s a generalization of the well-known association of Pauli matrices

and quaternions. We have a*? = b* = ¢ = 1 and they anticommute. Let [ = ba, J = ¢b, K = ac

Then

giving the quaternions. The operators
A= (1/V2)(1 + I)
B=(1/V2)(1+ J)
C=(1/vV2)1 + K)

braid one another:

ABA = BAB, BCOB = CBC, ACA = CAC.

A >X
B| > =

A X

\

I
X
ALK
w>w
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Majoranas are related to standard fermions as follows: The algebra for Majoranas is ¢ = ¢f

and ¢’ = —c’c if ¢ and ¢ are distinct Majorana fermions with ¢© = 1 and ¢ = 1. One can make
a standard fermion from two Majoranas via

Similarly one can mathematically make two Majoranas from any single fermion. Now if vou take
a set of Majoranas

{"1-":-“:;- T -"n}
then there are natural braiding operators that act on the vector space with these ¢; as the basis.
The operators are mediated by algebra elements

—

T = (1 + cryr1cr) / V2,
1 i/
e = (1 — cryr0k)/ V2.
Then the braiding operators are
1. : Span{cy.co, -+ ., cpn}t — Span{cy,ca, -+ .. Cn}

via
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Braiding Majorana Fermions

4—1-

U U

T(x) =
T(y) =
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Now we show how the Majorana Fermion
algebra is at the base of the Dirac equation, and
how nilpotent operators (representing Fermions)
arise naturally in relation to plane wave solutions
to the Dirac equation.

5.2 Relativity and the Dirac Equation

Starting with the algebra structure of ¢ and 7 and adding a commuting square root of — 1, 7, we
have constructed fermion algebra and quaternion algebra. We can now go further and construct
the Dirac equation. This may sound circular. in that the fermions arise from solving the Dirac
equation, but in fact the algebra underlying this equation has the same properties as the creation
and annihilation algebra for fermions. so it 1s by way of this algebra that we will come to the
Dirac equation. If the speed of light is equal to 1 (by convention). then energy £. momentum p
and mass m are related by the (Einstein) equation

E? = p* + m®=.
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Recapitulation and One More

We start with ¢» = ¢'P*~F% and the operators
E = 1i9/0,
and
p= —id/O,
so that
EvYy = Eh
and
pY = p»

The Dirac operator is

O=FE—ap— m
and the modified Dirac operator is
D = Opa = BaFE + 3p — am,
so that
Dy = (BaFE + Bp — am)y = Ur
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If we let
— i(px+ FEt)

(reversing time), then we have

Dy = (—pBaE + Bp am)y = Uy,

giving a definition of V" corresponding to the anti-particle for U,

We have that

and

»

UUY 4+ UU = 4E?%.

Thus we have a direct appearance of the Fermion algebra corresponding to the Fermion plane
wave solutions to the Dirac equation.
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And: Light Cone Coordinate with m
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Feynman Checkerboard
o Ay
LYo Dl

RII: -
Ao

— 21U or

At (r.,)=(7,3)

: > \ .\ (I’. Q) — (7. O)

(r, Q) = (0. 3)

r= (t+X)/2
0= (t-x)/2
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The Feynman Checkerboard

y C(P)
At (r,9)=(,3) : P

Dirac Amplitude

(XX XK > () =(7.0)

P 7 C(P) =
_ TR number
r0) =0 3) {ESTKSRES”. . .. of corners in

(r,0)=(0,0)
r= (t+x)/2
3-96 ) = (t—X)/2 8131A10
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In the RIl, Majorana Fermion case we have

DYy / Il = —

and we are returned to the
viewpoint from the beginning
of the talk.

Thus the Checkerboard works with plus/minus cornering
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