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Abstract: <span>| will describe Connes approach to the standard model based on spectral noncommutative geometry with particular emphasis on the
symmetries. The model poses constraints which are satisfied by the standard model group, and does not leave much room for other possibilities.
There is however a possibility for a larger symmetry (the ““grand algebra’) which may also be instrumental to obtain the correct mass of the
Higgs.</span>
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In this seminar I will connect noncommutative geometry and the
standard model

T he framework I choose is that of the spectrial triples, i.e. the
approach to geometry based on the spectral properties of the
algebra of operators defined on them. The construction enables
to generalize ordinary geometry to noncommutative geometry

I will not dwell on the need to generalize geometry. The origi-
nal noncommutative geometry is the quantum mechanics phase
space. The Planck scale, and the need to quantize gravity, in-
dicates that also spacetime may be described by some sort of
noncommutative geometry.

For this seminar noncommutative geometry is not the one given by noncommutative coordi
nates | [z#, x¥] = i@#* |, in fact for most of the talk I will have a recognizable spacetime with

the usual symmetries
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T he starting point of Connes’' approach to is that geometry and
its (noncommutative) generalizations are described by the spec-
tral data of three basic ingredients:

e AN algebra \A\ which describes the topology of spacetime.

e A Hilbert space |’H\ on which the algebra act as operators,
and which also describes the matter fields of the theory.

e A (generalized) Dirac Operator ]Do‘ which carries all the in-
formation of the metric structure of the space, as well as
other crucial information about the fermions.

An important role is also played by two other operators: the
chirality [v| and charge conjugation \J!
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There is a profound mathematical result (Gefand-Najmark) which
states that the category of commmutative \C* }—algebras and that
of topological Hausdorff spaces are in one to one correspondence.
The algebra being that of continuous complex valued functions
on the space.

Connes programme is the transcription of all usual geometrical
objects into algebraic terms, so to provide a ready generalization
to the case for which the algebra is noncommutative

The points of the space (that can be reconstruced) are pure
states, or maximal ideals of the algebra, or irreducible represen-
tations. They all coincide in the commutative case.

T he geometric aspects are encoded in the Dirac operator.
3
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In the case in which \.A| is commutative this describes an ordinary
topological space. And over the years a dictionary has been built
to translate the usual geometrical concepts using these algebraic
data.

Bundles are projective modules, forms are built with the com-
mutators between Do’ and I.A] and are represented as operators

on ’H| the distances are defined by the Dirac operator, etc.

The algebraic concepts are more robust than those based on
“pointwise” geometry and they survive when the algebra is non-
commutative, enabling us to do noncommutative geometry
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In the commutative case it is possible to characterize a manifold
with properties of the elements of the triple (all five of them)

There is a list of conditions and a theorem (Connes) which proves
this.

Since the conditions are all purely algebraic there remain valid in
the noncommutative case, defining a noncommutative manifold
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In case you want to see them:

n

Dimension There is a nonnegative integer n such that the eigenvalues of
Do grow os O(}).

Regularity For any a € A both a and [Dp,a] belong to the domain of §*
for any integer k, where § is the derivation given by 6(1") = [|D|,1].

Finiteness The space [N, Dom(D¥*) is a finitely generated projective left
A module.

Reality T here exist J with the commutation relation fixed by the number
of dimensions with the property

(a) Commutant [a, Jb*J~1] = 0O,Va,b

(b) First order [[D,a],b° = Jb*J '] =0 ,Va,b

Orientation There exists a Hochschild cycle ¢ of degree n which gives
the grading ~ , This condition gives an abstract volume form.

FPoincaré duality A Certain intersection form detemrined by Do and by
the K-theory of A and its opposite is nondegenrate.
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Remarkably, if one applies this to the algebra of functions val-
ued in diagonal ]2 x 2\ matrices one finds the Higgs Lagrangian
of a |(U(1) xU(1) —>U(1)’ breaking, in which the Higgs is the
“vector” boson corresponding to the internal degree of freedom.

In this case the space is only “almost” noncommutative, in the
sense that there still is an underlying spacetime, and and internal
noncommutative but finite dimensional algebra

In these cases the algebra is of the kind | A = C’(R"’ R Ap|, where
'AF is ma finite dimensional (matrix) algebra.
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Describe not only a geometry, but also the behaviour of the fields, and their
couplings to the geometry of spacetime (gravity). Treating on an equal

footing the external geometry (spacetime), and the inner one, gauge degrees
of freedom

T he approach is based on the spectral action. The algebra is almost com-
mutative, the Hilbert space is that of fermion matter fields, and the Dirac
operator contains all information on the metric of spacetime, as well as the
masses , couplings and mixings of fermions.

As Dirac operator we take Dg = D+ SR+ 75 D DF‘

TDF is a finite matrix containing masses (mixings) of the fermions

Its covariant version | Dy = Do+ A+ JAJ l where [ A] is a one-form, we obtain
the gauge wvector bosons, and the Higgs boson which is like the internal
component of the vector bosons

10
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The approach Is based on the sa&ml action. The algebra Is almost com-
mutative,

the Hilbert space is that of fermion matter fields, and the Dirac
Operator contains all information on the metric of spacetime, as well as the
masses , couplings and mixings of fermions.,

As Dirac operator we take Do =@+ @ [+ 15 @ Df
Dp|is a finite matrix contalning masses (mixings) of the fermions

= Dq | where A is a one-form, we obtain
the gauge vector bosons, and the Higg™ggson which is like the internal
component of the vector bosons
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The spectral action contains two part, one is the bosonic action, which is a

Dy |
S =— T (A)
‘ = XUA /)

regularized trace:

where \X[ is a cutoff function, for example the characteristic function of the
interval [0, 1] J in this case the action is just the number of eigenvalues of
the Laplacian which are below the scale /\|

Then there is a ‘''standard'" fermionic action (W| D4 |W) ‘ which needs to be

regularized, in the usual way (one can use the same cutoff)

11
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In the work of Chamseddine, Connes and Marcolli the renormal-
ization group flow is done by considering as boundary condition
the unification of the three interaction coupling constants at A |.
This is approximately true.

T he wvarious couplings and parameters are then found at |low
energy via the renormalization flow

Yukawa couplings (masses) and mixings are taken as inputs. The
mass parameter of the Higgs is however not needed, and is a
function of the other parameters (which are dominated by the
top mass).

T here is therefore predictive power.

12
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Technically the bosonic spectral action is a sum of residues and can be ex-
panded in a power series in terms of A—1 as

Sp = _ fanan(D?/A?)

where the f,, are the momenta of x

fo = / dx zx(x)
JO
fo = / dz x(z)
Jo
Sfon4a = (_1)710_2)((33) n > 0
=0
the a, are the Seeley-de Witt coefficients which vanish for n odd. For D? of
the form

14
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Defining (in term of a generalized spin connection containing also the gauge

fields)
1 ¥ o L
Wp = S (a” + g7y 1)
QHV —_— C()MCAJV - C');,w# + [CA)”, (.t.):/]
E = pg— gt (é)uw,, + wuw, — I_ﬂ,,wp)
then
N4 a
ap = 16#2,/d$ Vg tr e
N= _ R
—_ dxz? tr ( — E
az 16#2,/ x”\/q r( 6—|— )
— 1 1 4 s 2
as = 162360 / dz® /g tr (—12V*V, R + 5R* — 2R, R*"

+2R,0p, R*7P — 60RE + 180E? 4+ 60VH+V , E + 302, 2"

tr is the trace over the inner indices of the finite algebra Ay and in €2 and E
are contained the gauge degrees of freedom including the gauge stress energy
tensors and the Higgs, which is given by the inner fluctuations of D

15
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Now the matter is just cranking a machine. As algebra one takes
an “almost commutative geometry’, i.e. the product of the usual
spacetime times a finite dimensional noncommutative algebra

We start from the algebra, a tensor product I.A =C(R*) ® Ap ‘ with the finite
Ar = Mat(C)s ® He C |

T he unitaries of the algebra correspond to the symmetries of the
standard model: SU((3) & SU2)  U(1) ‘

A unimodularity condition takes care of the extra U(1)

T his algebra must be represented as operators on a Hilbert space, which also
has a continuos infinte dimesional part (spinors on spacetime) times a finite
dimensional one: H =sp(R) & Hr ‘ The grading given by -~ | splits it into a
left and right subspace: Hr & Hr o

16
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As I said the Dirac operator contains all data relative to the fermions, but
no information on the Higgs mass (actually vev and quartic coupling coeffi

cient) which can be calculated from the fermion mass parameters (Yukawa
couplings). These in turn are dominated by the top quark coupling.

Hence we have a 'prediction’” for the Higgs mass.

T he prediction is 170 GeV. As yvyou know the actual mass is 126 GeV.

Now it depends how you consider this theory. if you take it as a mature fully
formed theory then the result is wrong. If you take it (as I do) as a tool to
investigate the standard model starting from first principles, then I think it is
remarkable that a theory based on pure mathematical result gets reasonable
numbers

I took the measurement of the Higgs as a reason to understand in which
direction one has to improve on the theory

19
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I will now try to understand in this framework the origin the standard model

algebra, and see if it may shed light on the mass of the Higgs.
| Asm = C & H & M3(C),

:]HI are the quaternions, which we represent as 2 x 2‘ matrices

It is possible to have this emerge from the most general algebra
which satisfies the condition of being a noncommutative mani-
fold

The manifold conditions I flashed earlier are purly algebraic.
Therefore they can be applied to finite dimensional (matrix) al-
gebras. The resul is that only one kind of algebras are allowed:

Arxr = Mqg(H) & Mo, (C) a € N.

20

Pirsa: 14050031

Page 30/38



Let us look in detail to a vector in the Hilbert space:

‘WCIm(x) € H = L2(M) @ Hp = sp(L2(M)) @ Hp

SSCx

which is 96 dimensional, and
HF\ which is 384 dimensional. The meaning of the indices is as

follows:
W ()]

:’ _07 zl are the spinor indices. T hey are not internal indices in

the sense that the algebra Ay acts diagonally on it. They take
two values each, and together they make the four indices on an

ordinary Dirac spinor.

23
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wm ()

‘o« = 1...4is the flavour index. It runs over the set upg,dg,ur,dr,
when 1= 1,2,3|, and |vg,er,vr,er| when I = 0| It repeats in
the obvious way for the other generations.

25
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We can similarly write down the Dirac operator
D=3 ®Ios +~°® Dr

Oy M Mp Osn |
M'  Ogn Ogn Oswn |
M}, Ogn Osy M -
Ognv Osny MT Ogn

D}.' =

MJ contains the Dirac-Yukawa couplings. It links left with right particles.
MR=M'};] contains Majorana masses and links righr particles with right
M, Oan Mpr Oan |

E = where
S ( Oan My i Oan Oan
tainins the masses of the up, charm and top quarks and the neutrinos (Dirac

antiparticles.

M, ’ con

mass), lMRﬂ contains the Majorana neutrinos masses and !Mdl the remaining

quarks and electrons, muon and tau masses, including mixings

29
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a=4\

Consider the case of ‘MG(IHI) EBMQQ(C)] for the case

In this case we need a 2-:-(2:-4)2 = 128\ dimensional space,
which for 3 generations gives a [384: dimensional Hilbert space.

I need a representation of the algebra Mg4(H) & MB(C)I acting on
the spinors I gave earlier, and the order zero conditions

I do not want to go into technical details (I could show slides
with all indices in gory detail. .. ).

31
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T he fundamental point is that spinor indices and the internal gauge indices

are mixed.

The two part of the algebra act on the indices like

welm (2|

Quaternions act on the blue indices, and complex numbers act
on the red indices.

We are in a phase in which the Euclidean structure of space time has not yet

emerged.

T he fermions are not yet fermions

32
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This grand algebra, and a corresponding |D| operator, have
“more room’” to operate. Although the Hilbert space is the
same, we abandoned the factorization of the internal indices,
giving us more entries to accommodate the Majorana masses

Hence we can put a Majorana mass for the neutrino and at the
same time satisfy the order one condition. Then the one form
corresponding to this |D,| will give us the by now famous field
o, which can only appear before the transition to the geometric
spacetime. But we must abandon he boundedness of the algebra.

T he natural scale for this mass is to be above a transition which
gives the geometric structure. Therefore it is natural that it may
be at a high scale. How high we can discuss

34
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The grand symmetry is no ordinary gauge symmetry, there is
never a SU(B)‘ in the game for example

It represents a phase in which the internal noncommutative ge-
ometry contains also the spin structure, even the Lorentz (Eu-
clidean) structure of space time in a mixed way

T he differentiation between the spin structure of spacetime, and
the internal gauge theory comes as a breaking of the symmetry,
triggered by |o|, which now appears naturally has having to do
with the geometry of spacetime.

What sort of spacetime do we have with this grand symmetry?
Should we dare more and go non associative as well?

35
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