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Abstract: <span>A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition.
It is well known that the parameters that characterize the Kerr-Newman black hole (angular momentum, charge, mass and horizon area) satisfy
severa important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamica black holes. This kind of
inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse.
They are closed related with the cosmic censorship conjecture. Also, variants of these inequalities are valid for ordinary bodies. In this talk | will
review recent resultsin this subject.</span>
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Geometric inequalities

Geometric inequalities have an ancient history in Mathematics. A
classical example is the isoperimetric inequality for closed plane

curves given by
L? > 47A (= circle)

where A is the area enclosed by a curve C of length L, and where
equality holds if and only if C is a circle.
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» The inequality L? > 47 A applies to complicated geometric
objects (i.e. arbitrary closed planar curves).

» The equality L? = 47 A is achieved only for an object of
“optimal shape” (i.e. the circle). This object has a variational
characterization: the circle is uniquely characterized by the
property that among all simple closed plane curves of given

length L, the circle of circumference L encloses the maximum
x area.
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Geometrical inequalities in General Relativity

General Relativity is a geometric theory, hence it is not
surprising that geometric inequalities appear naturally in it.
Many of these inequalities are similar in spirit as the
iIsoperimetric inequality.

However, General Relativity as a physical theory provides an
important extra ingredient. It is often the case that the
quantities involved have a clear physical interpretation and the
expected behavior of the gravitational and matter fields often
suggests geometric inequalities which can be highly non-trivial
from the mathematical point of view.

The interplay between physics and geometry gives to
geometric inequalities in General Relativity their distinguished
character.
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Plan of the talk

» Part |: Physical picture.
» Part Il: Theorems.

» Part Ill: Open problems and recent results on bodies.
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Positive mass theorem

Let m be the total ADM mass on an asymptotically flat complete
initial data such that the dominant energy condition is satisfied,

then we have:
0 < m (= Minkowski).

» The mass of the spacetime measures the total amount of
energy and hence it should be positive from the physical point
of view.

» The mass m in General Relativity is represented by a
» geometrical quantity on a Riemannian manifold.

From the geometrical mass definition, without the physical picture,
it would be very hard to conjecture that this quantity should be
positive. In fact the proof turn out to be very subtle (Schoen-Yau
79, Witten 81).
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A key assumption in the positive mass theorem is that the
matter fields should satisfy an energy condition. This

condition is expected to hold for all physically realistic matter.

This kind of general properties which do not depend very
much on the details of the model are not easy to find for a
macroscopic object. And hence it is difficult to obtain
simple and general geometric inequalities among the
parameters that characterize ordinary macroscopic objects.

Black holes represent a unique class of very simple
macroscopic objects. They are natural candidates for
geometrical inequalities.
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Stationary black holes

The black hole uniqueness theorem ensures that stationary
black holes in vacuum (for simplicity we will not consider the
electromagnetic field) are characterized by the Kerr exact
solution of Einstein equations (important aspects of black hole

uniqueness remain open see Chrusciel — Lopes Costa —
Heusler, Living Review 12).

The Kerr metric depends on two parameters: the mass m and
the angular momentum .

The Kerr metric is well defined for any choice of the
parameters. However, it represents a black hole if and only if
the following inequality holds

VI = m.
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Physical interpretation

A
\/1671' =m
A

The difference m — 4/ 75 is the rotational energy of the Kerr

black hole. This is the maximum amount of energy that can
be extracted by the Penrose process (Christodoulou).

VI = m

From Newtonian considerations, we can interpret this
inequality as follows (Wald): in a collapse the gravitational
attraction (= m?/r?) at the horizon (r =~ m) dominates over
the centrifugal repulsive forces (=~ J?/mr?3).

8|t < A

The black hole temperature

1 (87 J)?
© = am (1— T)

is positive £ > 0 and it is zero if and only if the black hole is
extreme.
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Geometric inequalities for dynamical black holes

» Black holes are not stationary in general:

» Astrophysical phenomena like the formation of a black hole by
gravitational collapse or a binary black hole collision are highly

» dynamical.

» Dynamical black holes can not be characterized by few
parameters as in the stationary case.

» Remarkably, these inequalities extend to the fully dynamical
regime.

» The inequalities are deeply connected with global properties of
the gravitational collapse: cosmic censorship conjecture.
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Kerr black hole: geometrical inequalities

The area of the horizon is given by the important formula

A:87r(m2+\/m4—J2).

This formula implies the following three geometric inequalities
between the three relevant parameters (A, m, J):

1/ 5 (= Schwarzschild)

.
\/ J | < m (= Extreme Kerr)
T|J| < A (= Extreme Kerr)
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T he inequality 87 |J| < A for dynamical black holes

Consider a dynamical black hole. Physical quantities that are well
defined for this spacetime are:

» The total ADM mass m of the spacetime: the sum of the
black hole mass and the mass of the gravitational waves
surrounding it. In the stationary case, the mass of the black
hole is equal to the total mass of the spacetime. The mass m
is a global quantity: it carries information on the whole
spacetime.

» The area A of the horizon. The area A is a quasi-local
» quantity: it carries information on a bounded region of the

spacetime.

What are the quasi-local mass and quasi-local angular
momentum of a dynamical black hole? In general, it is difficult
to find physically relevant quasi-local quantities like mass and
angular momentum (see Szabados, Living Review, 09).
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Kerr black hole: geometrical inequalities

The area of the horizon is given by the important formula

A:87r(m2+\/m4—J2).

This formula implies the following three geometric inequalities
between the three relevant parameters (A, m, J):

1/ S (= Schwarzschild)

.
\/ J | < m (= Extreme Kerr)
T|lJ| < A (= Extreme Kerr)
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Evolution of the quasi-local mass mpp

» By the area theorem, we know that the horizon area A
increase with time.

» In axial symmetry there is not transfer of angular

» momentum by gravitational waves. Then, the quasi-local
mass of the black hole should increase with the area, since
there is no mechanism at the classical level to extract energy
from the black hole (no Penrose process in axial
symmetry).

» Then, both the area A and the quasi-local mass mpp
should monotonically increase with time.
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» S: Cauchy surface such that
« Radiation the collapse has already

d P occurred.

> ( » Gravitational waves carry
- /I - -

NS positive energy: m = mg.
‘\\ Mo < 717

N » A: area of the intersection
SN N\ Jo=1J

. of the event horizon with S.
.\?).(J’ ™) By the black hole area

theorem we have Ag > A.

Singularity (Jo, ™Mo, Ag) |
Horizon

» Angular momemtum is

X conserved (axial
symmetry): Jo = J.

/ » Since we have assumed that
8| J| < A then mpp also
increase with time, then:

L Mpp < Mo < m.
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Physical arguments

The arguments in support of this inequality are based in the
following three physical principles:

(i) The speed of light ¢ is the maximum speed.

(ii) For bodies which are not contained in a black hole the
following inequality holds (hoop conjecture)

G

where m(£2) is the mass of the body and R(£2) is some
measure of size of 2.

The inequality

G

can be interpreted as a version of this inequality for black
holes.
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(iii) The conjectured inequality for bodies holds for black holes.
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