Title: Bulk-Edge Correspondence in 2+1-Dimensional Abelian Topological Phases
Date: May 09, 2014 10:30 AM
URL: http://pirsa.org/14050011
Abstract: The same bulk two-dimensional topological phase can have multiple distinct, fully-chiral edge phases. We show that this can occur in the integer quantum Hall states at fillings 8 and 12 with experimentally-testable consequences. We also show examples for Abelian fractional quantum Hall states, the simplest examples being at filling fractions $8 / 7,12 / 11,8 / 15,16 / 5$. For all examples, we propose experiments that can distinguish distinct edge phases. Our results are summarized by the observation that edge phases correspond to lattices while bulk phases correspond to genera of lattices. Since there are typically multiple lattices in a genus, there are usually many stable fully chiral edge phases corresponding to the same bulk. We show that fermionic systems can have edge phases with only bosonic low-energy excitations and discuss a fermionic generalization of the relation between bulk topological spins and the central charge. The latter follows from our demonstration that every fermionic topological phase can be represented as a bosonic topological phase, together with some number of filled Landau levels. Our analysis also leads to a simple demonstration that all Abelian topological phases can be represented by a Chern-Simons theory parameterized by a K-matrix.

Bulk-edge correspondence for chiral Abelian quantum Hall states

Jennifer Cano
UC Santa Barbara

In collaboration with Meng Cheng, Michael Mulligan, Chetan Nayak, Eugeniu Plamadeala and Jon Yard (UCSB and Microsoft Station Q)

Phys Rev B 89, 115116 (2014)

When can a bulk phase have multiple corresponding edge phases?

Most of the time!
Experimentally relevant examples include: $\mathrm{IQH} \nu \geq 8, \mathrm{FQH} \nu=8 / 3,16 / 5,16 / 7, \ldots$

What defines a bulk quantum Hall state?

Universal
Quantized conductivities
Quasiparticle species and
Non-universal
Bulk gap
Plateau

What defines an edge state?

Why do we expect something interesting to happen at the edge?

Recall: Landau levels

What defines an edge state?

Why do we expect something interesting to happen at the edge?

Landau levels bend up near the edge of a sample Halperin 1982

Edge Lagrangian: gapless chiral bosons

Gapless excitations

1. Near the edge
2. One per filled

Landau level
3. Linear dispersion
4. Chiral

Chiral boson
Lagrangian:

$$
\mathcal{L}=\frac{1}{4 \pi} \int d x \sum_{I}\left(\partial_{t}+v_{I} \partial_{x}\right) \phi_{I} \partial_{x} \phi_{I}
$$

Add density-density interactions:
$\mathcal{L}=\frac{1}{4 \pi} \int d x \sum_{I J}\left(\delta^{I J} \partial_{t} \phi_{I} \partial_{x} \phi_{J}+V^{I J} \partial_{x} \phi_{I} \partial_{x} \phi_{J}\right)$
Orthogonal transformation diagonalizes V
Wen Int. J. Mod. Phys. $B 61711$ (1991)

IQH edge Lagrangian is Fermi liquid

$$
\begin{gathered}
\mathcal{L}=\frac{1}{4 \pi} \int d x \sum_{I}\left(\partial_{t}+v \partial_{x}\right) \phi_{I} \partial_{x} \phi_{I} \\
\left\langle\psi_{J}^{\dagger}(x, t) \psi_{I}(0,0)\right\rangle \sim\left\langle e^{i \phi_{I}(x, t)} e^{-i \phi_{J}(0,0)}\right\rangle \sim \frac{\delta_{I J}}{x-v t}
\end{gathered}
$$

Allowed operators: $e^{i n_{I} \phi_{I}}, n_{I} \in \mathbb{Z}$ from boundary condition $\phi_{I}=\phi_{I}+2 \pi$

FQH Laughlin edge is Luttinger liquid

Wen's hydrodynamic theory: $\mathcal{L}=\frac{m}{4 \pi} \int d x\left(\partial_{t}+v \partial_{x}\right) \phi \partial_{x} \phi$

Allowed operators: $\psi_{e}^{\dagger} \sim e^{i m \phi}$

Correlators: $\quad\left\langle e^{i m \phi(x, t)} e^{-i m \phi(0,0)}\right\rangle \sim \frac{1}{(x-v t)^{m}}$

$$
\left\langle e^{i \phi(x, t)} e^{-i \phi(0,0)}\right\rangle \sim \frac{1}{(x-v t)^{1 / m}}
$$

General QH edge has several channels and interactions between them

The K-matrix contains universal physics
The V-matrix parameterizes velocities and interactions
The t-vector carries the charge of each mode
Wen Int. J. Mod. Phys. B6 1711 (1991)

The K-matrix (with charge vector) contains all the universal physics

Filling fraction: $\nu=t^{T} K^{-1} t$
Ground state degeneracy (torus): $\operatorname{det}(K)$
Chiral central charge: $\operatorname{sign}(K)=r_{+}-r_{-}$

Quasiparticle charge and statistics

Physical quasiparticles: $\quad e^{i m \phi} \equiv e^{i m_{I} \phi_{I}} \quad m_{I} \in \mathbb{Z}$

$S_{m, m^{\prime}} \propto e^{-2 \pi i m^{T} K^{-1} m^{\prime}} \longrightarrow$ S-matrix: statistics

Edge physics uniquely determines the bulk phase!

Examples of K-matrices

$$
\mathrm{IQH}: \nu=\mathrm{N} \quad K=\mathbb{I}_{N}
$$

Laughlin: $\nu=1 / m \quad K=(m)$

Bilayer system: $\nu=1 / 3+1 / 5 \quad K=\left(\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right)$
Hierarchy: $\nu=2 / 5 \quad K=\left(\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right)$

Can two K-matrices describe the same

 edge physics?$$
\begin{gathered}
K_{1}=W^{T} K_{2} W \quad t_{1}=t_{2} W \quad W \in G L(n, \mathbb{Z}) \\
S_{L L}=\int d x d t\left(\frac{1}{4 \pi} K_{I J} \partial_{t} \phi^{I} \partial_{x} \phi^{J}-\frac{1}{4 \pi} V_{I J} \partial_{x} \phi^{I} \partial_{x} \phi^{J}+\frac{1}{2 \pi} t_{I} \epsilon_{\mu \nu} \partial_{\mu} \phi^{I} A_{\nu}\right) \\
\text { Change of variables } \phi^{I}=W_{J}^{I} \dot{\phi}^{J}
\end{gathered}
$$

Preserves boundary conditions $\tilde{\phi}^{I}=\tilde{\phi}^{I}+2 \pi$
One-to-one mapping between quasiparticles
Equivalence classes of K-matrices describe the same edge physics

Read, PRL 651502 (1990); Fröhlich and Thiran J. Stat. Phys. 76, 209 (1994)

Distinct classes of K-matrices can be distinguished by their scaling dimensions

If K is chiral, scaling dimensions are universal:

$$
\left\langle e^{i m_{I} \phi^{I}(0, t)} e^{-i m_{J} \phi^{J}(0,0)}\right\rangle \sim \frac{1}{t^{\Delta_{m}}}
$$

Scaling dimension: $\Delta_{m}=\frac{1}{2} m_{I} K_{I J}^{-1} m_{J}$

When K is non-chiral, Δ depends on V-matrix

Scaling dimensions can be used to physically distinguish edge phases

1) Tunneling across a QPC

Many terms: most relevant minimizes $m K^{-1} m$
Except most relevant term to dominate backscattered current:

$$
I_{b} \propto\left|v_{m}\right|^{2} V^{2 m K^{-1} m-1}
$$

Scaling dimensions can be used to physically distinguish edge phases

Consider interactions with gapped modes

Can interactions with gapped edge modes change the phase of the edge?

Describe the original + gapped edge modes in K -matrix formalism

$$
\begin{aligned}
& K \rightarrow K \oplus \sigma_{z} \quad\left(\begin{array}{cccc}
1 & 2 & 3 & \cdots \\
2 & 5 & 7 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \rightarrow\left(\begin{array}{cccc|cc}
1 & 2 & 3 & \cdots & 0 & 0 \\
2 & 5 & 7 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & -1
\end{array}\right) \\
& t \rightarrow(t, 1,-1) \\
& \nu=1 \text { strip is topologically trivial } \\
& \text { Leaves invariant: } \\
& \text { - Filling fraction } \\
& \text { - Chiral central charge } \\
& \text { - Determinant } \\
& \text { - Allowed quasiparticle spectrum } \\
& \text { (New quasiparticles } e^{i \phi_{N+1}}, e^{i \phi_{N+2}} \text { are electrons) }
\end{aligned}
$$

Counterpropagating mode generates

 backscattering terms$$
S_{L L}=\int d x d t\left(\frac{1}{4 \pi} K_{I J} \partial_{t} \phi^{I} \partial_{x} \phi^{J}-\frac{1}{4 \pi} V_{I J} \partial_{x} \phi^{I} \partial_{x} \phi^{J}+\frac{1}{2 \pi} t_{I} \epsilon_{\mu \nu} \partial_{\mu} \phi^{I} A_{\nu}\right)
$$

Thin strip, away from other edge modes
Backscattering: $e^{i \phi_{N+1}} e^{-i \phi_{N+2}}+$ h.c.

Near other edge modes
Backscattering: $e^{i n_{I} \phi_{I}}+$ h.c.
Will this term open a gap?

When does scattering open a gap?

Scattering: $e^{i n_{I} \phi_{I}}+$ h.c. $\propto \cos (n \phi)$
Fixing cosine \rightarrow gap

No external source of charge: $n_{I} K_{I J}^{-1} t_{J}=0$ Must commute with self at different positions: $n_{I} K_{I J}^{-1} n_{J}=0$
\longrightarrow Not met for a chiral edge. Example:

$$
K=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \begin{aligned}
& n_{I} K^{-1} n_{J}=n_{1}^{2}+n_{2}^{2}+n_{3}^{2} \neq 0! \\
& \text { When } K \rightarrow K \oplus \sigma_{z}, \text { can gap } \\
& \text { Haldane PRL } 742090(1995)
\end{aligned}
$$

What is the left over theory?

Example: $\quad K_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & 11\end{array}\right), t_{1}=(1,-1)^{T}$ Enlarge: $\quad K_{1} \rightarrow K_{1} \oplus \sigma_{z} \quad t_{1} \rightarrow(1,-1,1,1)^{T}$
1)

$$
S^{\prime}=\int d x d t u^{\prime} \cos \left(\phi_{3}+\phi_{4}\right)
$$

2)

$$
S^{\prime \prime}=\int d x d t u^{\prime \prime} \cos \left(\phi_{1}-11 \phi_{2}+2 \phi_{3}+4 \phi_{4}\right)
$$

$$
\begin{aligned}
& \text { Strategic variable } \\
& \text { change } \phi=W \phi^{\prime}
\end{aligned} \Rightarrow\left\{\begin{array}{l}
S^{\prime \prime}=\int d x d t u^{\prime \prime} \cos \left(\phi_{3}^{\prime}+\phi_{4}^{\prime}\right) \\
K \rightarrow K_{2} \oplus \sigma_{z}
\end{array} K_{2}=\left(\begin{array}{ll}
3 & 1 \\
1 & 4
\end{array}\right) .\right.
$$

What is the leftover theory?

Example, cont

$$
\begin{gathered}
\text { 1) Most relevant term: } \\
\begin{array}{c}
\text { 2) Most relevant term: } \\
u^{\prime} \cos \left(\phi_{3}+\phi_{4}\right)
\end{array} \\
u^{\prime \prime} \cos \left(\phi_{3}^{\prime}+\phi_{4}^{\prime}\right)
\end{gathered} K_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & 11
\end{array}\right), t_{1}=(1,-1)^{T} \quad K_{2}=\left(\begin{array}{ll}
3 & 1 \\
1 & 4
\end{array}\right), t_{2}=(-1,-2)^{T}, ~ \begin{gathered}
\text { Are these phases distinct? } \Delta=\frac{1}{2} m_{I} K_{I J}^{-1} m_{J} \\
\Delta_{\text {min }}=1 / 11
\end{gathered}
$$

Stable equivalence

$W^{T} K_{1} W \neq K_{2}$

K_{1} and K_{2} describe distinct edge phases

$$
W^{T}\left(K_{1} \oplus \sigma_{z}\right) W=K_{2} \oplus \sigma_{z}
$$

$K_{1} \oplus \sigma_{z}$ and $K_{2} \oplus \sigma_{z}$ describe same edge
\rightarrow surround same bulk
K_{1} and K_{2} surround the same bulk

More topologically trivial additions

$$
\begin{gathered}
\text { Superfluid strip } \\
K \rightarrow K \oplus \sigma_{x} \\
\text { Several } \nu=1 \text { strips } \\
K \rightarrow K \oplus \sigma_{z} \oplus \sigma_{z} \oplus \cdots \oplus \sigma_{z}
\end{gathered}
$$

Strip of anything non-chiral with trivial quasiparticles

$$
K \rightarrow K \oplus L, \quad|\operatorname{det}(L)|=1 \quad \operatorname{sig}(L)=(n, n)
$$

Distinction between topological phases of bosons and fermions

Bosonic K-matrix has only even numbers on the diagonal $\Rightarrow \sigma_{z}$ is not allowed!

Fermionic K-matrix has no restriction
Is there a difference: $K \rightarrow K \oplus \sigma_{z}$
$K \rightarrow K \oplus \sigma_{x}$
No: $W^{T}\left(K_{\text {odd }} \oplus \sigma_{z}\right) W=\left(K_{\text {odd }} \oplus \sigma_{x}\right)$

Questions

When do distinct edge phases exist for a given bulk?

Does anything different happen when multiple copies of σ_{x}, or other topologically trivial matrices, are appended to the K-matrix?

When there are two distinct edge phases, is one preferred because its gapping term is more relevant?

Equivalence class of K-matrices = lattice

K-matrix

Lattice $\Lambda=\left\{m_{I} \mathbf{e}_{I} \mid m_{I} \in \mathbb{Z}\right\}$
$K_{I J}=\mathbf{e}_{I} \cdot \mathbf{e}_{J}$

Edge phase = lattice = K-matrix equivalence class

Choose new basis:

$$
\Lambda=\left\{m_{I} \mathbf{e}_{I}^{\prime} \mid m_{I} \in \mathbb{Z}\right\}
$$

$$
\begin{aligned}
& K_{I J}^{\prime}=\mathbf{e}_{I}^{\prime} \cdot \mathbf{e}_{J}^{\prime} \\
& W^{T} K W=K^{\prime}
\end{aligned}
$$

Lattice yields physical quantities:

Minimum length of vector $=$ minimum scaling dimension $\Delta_{\text {min }}$

Dual lattice vectors $=$ quasiparticles

$$
\Lambda^{*}=\left\{m_{I} \mathbf{f}_{I} \mid m_{I} \in \mathbb{Z}\right\} \quad f_{a}^{I}=\left(K^{-1}\right)^{I L} e_{L a}
$$

Inner product $=$ statistics

$$
\begin{aligned}
& \mathbf{f}_{I} \cdot \mathbf{f}_{J}=K_{I J}^{-1} \\
& S_{m, m^{\prime}} \propto e^{-2 \pi i m K^{-1} n^{\prime}}
\end{aligned}
$$

Want to classify a bulk phase by its "primitive" quasiparticles

Λ^{*} Dual lattice vectors $=$ quasiparticles
Λ Original lattice vectors $=$ trivial particles
Λ^{*} / Λ "Discriminant group" $=$ Group of primitive quasiparticles

Lattices are classified by genus

A genus is defined by its:

- Discriminant group \bar{A}
- Inner product
- Signature $\left(r_{+}, r_{-}\right)$
- Parity

A bulk phase is defined by its:

- Quasiparticle statistics
- Chiral central charge $r_{+}-r_{\text {. }}$ (mod 24)
- Constituent particles

Genus determines a bulk phase

For chiral bulk $\left(r_{\mathrm{L}}=0\right)$, bulk determines a family of genera

Nikulin: genus of lattices = stable equivalence of inner product for any type of stable equivalence

In principle, can count the lattices in a genus by the Smith-Siegel-Minkowski mass formula

\# of automorphisms of lattice
counts symmetries of K matrix

- Chiral Abelian quantum Hall states with at least 10 edge modes have multiple distinct chiral edge phases ${ }^{1}$
- Else, if chiral central charge ≥ 2, a finite set of bulk states have only one edge phase; all others have multiple ${ }^{2}$ \rightarrow Multiple edge phases are the norm, not the exception
${ }^{1}$ G. Watson, Proc. London Math Soc. 1257787 (1962)
${ }^{2}$ D. Lorch and M. Kirschmer, LMS Journal of
Computation and Mathematics 16, 172 (2013)

Stable equivalence between even and

 odd matrices$$
K_{\mathrm{odd}} \oplus \sigma_{z}=W^{T}\left(K_{\mathrm{even}} \oplus \sigma_{z}\right) W
$$

Example

$$
\begin{aligned}
& \mathrm{IQH} \nu=8: K=\mathbb{I}_{8} \quad W_{8}^{T}\left(K_{E_{8}} \oplus \sigma_{z}\right) W_{8}=\mathbb{I}_{8} \oplus \sigma_{z} \\
& \mathbb{I}_{8}=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
& K_{E_{s}}=\left(\begin{array}{cccccccc}
2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & -1 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & - & 2 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2
\end{array}\right)
\end{aligned}
$$

Can distinguish experimentally between

 candidate $\nu=8$ phases1) Tunneling across a QPC

$I_{b} \propto V^{2 \Delta_{m i n}-1}$
$\mathbb{I}_{8} \rightarrow I_{b} \propto V \quad$ (electron tunneling)

$$
K_{E_{\mathrm{s}}} \rightarrow I_{b} \propto V^{3} \quad \begin{gathered}
\text { (charge } 2 e \text { tunneling o } \\
\text { composite particle })
\end{gathered}
$$

Can distinguish experimentally between

 candidate $\nu=8$ phases2) Tunneling from
a metallic lead

In I_{8} state tunnel one electron:

$$
\begin{gathered}
\mathcal{L}_{\text {lead }}=t_{m} \psi_{\text {lead }}^{\dagger} e^{i \phi_{I}} \\
I_{\text {lead }} \propto V
\end{gathered}
$$

E_{8} state does not have a charge e operator!
Tunnel two electrons from lead:
Spin-polarized: $\quad \mathcal{L}_{\text {lead }}=t_{m} \psi_{\text {lead }}^{\dagger} \partial \psi_{\text {lead }}^{\dagger} e^{i m_{1} \phi_{R}^{I}} \quad I_{\text {lead }} \propto V^{5}$
Not spin-polarized: $\mathcal{L}_{\text {lead }}=t_{m} \psi_{\text {lead }, \uparrow}^{\dagger} \psi_{\text {lead }, \downarrow}^{\dagger} e^{i m_{I} \phi_{R}^{I}} I_{\text {lead }} \propto V^{3}$

Formalize the odd-even correspondence

Utilize another theorem from Nikulin:
For every fermionic bulk phase, there is a corresponding* edge phase which yields the same** bulk quasiparticles and statistics and has no gapless charge e operator

Caveats
*might have different number of edge modes
** mode

Example: even-odd equivalence by adding edge modes

$$
\begin{aligned}
& \nu=1 / 5 \\
& K=(5)
\end{aligned}
$$

No non-trivial stable equivalence

$$
K_{1}=\left(\begin{array}{cccc}
\nu=3+1 / 5 \\
5 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
K_{1} \oplus \sigma_{z}=W^{T}\left(K_{2} \oplus \sigma_{z}\right) W
$$

$$
K_{2}=\left(\begin{array}{llll}
2 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

Even lattice

Candidate states at $\nu=3+1 / 5$ have same quasiparticles mod e

$$
\begin{array}{rlrl}
K_{1}=\left(\begin{array}{llll}
5 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) & K_{2}=\left(\begin{array}{llll}
2 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 2
\end{array}\right) \\
t=(1,1,1,1) & t & =(2,2,0,0)
\end{array}
$$

Compare quasiparticle charge:
$e^{*} / e \in\{0,1 / 5,2 / 5,3 / 5,4 / 5\} \quad e^{*} / e \in\{0,2 / 5,4 / 5,6 / 5,8 / 5\}$ Defined mode Defined $\bmod 2 e$

Which gapping vector is most relevant?

Adding counter propagating modes
Scaling dimension determined by V-matrix
With control over V, can make any gapping term arbitrarily relevant

Truth: experimentalists don't have precise control Theorists don't know what they would like to have controlled

Conclusions

- A bulk Abelian topological phase generically has multiple edge phases
- Edge phases correspond to lattices while bulk theories correspond to genera of lattices
- Every fermionic topological phase is stably equivalent to a bosonic phase after adding a certain number of filled Landau levels
- Distinct edge phases can be physically distinguished by tunneling experiments

Further directions?

- Physical implementation: bilayers?

- Generalize: non-chiral edge phases? non-Abelian?

- Interesting (theoretical) application: entanglement entropy?

