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Abstract: <span>Locally covariant quantum field theory (LCQFT) has proven to be a very successful framework for QFT on curved spacetimes. It is
natural to ask, how far these ideas can be generalized and if one can learn something about quantum gravity, using LCQFT methods. In particular,
one can use the relative Cauchy evolution to formulate the notion of background independence. Recently we have proven that background
independence in this sense holds for effective quantum gravity, formulated as a perturbative QFT. Remarkably, the formalism of LCQFT can be
extended to structures more general than spacetimes. The essential feature is the presence of the causal structure. An example application would be
QFT on causal sets (work in progress).</span>
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Introduction e -
Effective quantum gravity

Local covariance

Difficulties in quantum gravity

@ In contrast to QFT on curved
spacetimes, in QG the spacetime
structure 1s dynamical. Need for
"background independance".
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Introduction i :
Effective quantum gravity

Local covariance

Ways around some of the problems

@ Non-renormalizability: use Epstein-Glaser
renormalization to obtain finite results for any fixed
energy scale. Think of the theory as an effective theory.
Outlook: use the renormalization group flow equations to
look for a UV fixed point (asymptotic safety program).
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Ways around some of the problems

@ Non-renormalizability: use Epstein-Glaser
renormalization to obtain finite results for any fixed
energy scale. Think of the theory as an effective theory.
Outlook: use the renormalization group flow equations to
look for a UV fixed point (asymptotic safety program).
Dynamical nature of spacetime: make a tentative split
of the metric into background and perturbation, quantize
the perturbation as a quantum field on a curved

background, show background independence at the end.

Kasia Rejzner QG from LCQFT

Pirsa: 14050004 Page 7/76



Introduction e -
e Effective quantum gravity

Local covariance

Ways around some of the problems

@ Non-renormalizability: use Epstein-Glaser
renormalization to obtain finite results for any fixed
energy scale. Think of the theory as an effective theory.
Outlook: use the renormalization group flow equations to
look for a UV fixed point (asymptotic safety program).

Dynamical nature of spacetime: make a tentative split
of the metric into background and perturbation, quantize
the perturbation as a quantum field on a curved
background, show background independence at the end.
Diffeomorphism invariance: use the BV formalism to
do the gauge fixing. Possible difficulties: base manifold
1s Lorentzian and non-compact, symmetry group 1s

Infinite dimensional, so 1s the configuration space.
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Effective quantum gravity

Local covariance

Intuitive idea

@ In experiment, geometric structure is probed by
local observations. We have the following data:
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Intuitive idea

@ In experiment, geometric structure is probed by
local observations. We have the following data:
e Some region O of spacetime where the
measurement is performed,
e An observable ¢, which we measure,
We don’t measure the observable curvature at a
point, but we have some smearing related to the
experimantal uncertainty. This is modeled by
smearing with a test function f. For example:

d(f) = / FOR).
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e Some region O of spacetime where the
measurement is performed,
e An observable &, which we measure,
We don’t measure the observable curvature at a
point, but we have some smearing related to the
experimantal uncertainty. This is modeled by
smearing with a test function f. For example:

o) = [ FWRG)
@ We can think of the measured observable as a
function of a perturbation of the fixed background
metric: a tentative split into: g,,, = g, + M.
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Locul covarinee

Intuitive idea

o In experiment, geometric structure is probed by
local observations. We have the following data:

e Some region O of spacetime where the
measurement is performed,

e An observable ¢, which we measure,

e We don’t measure the observable curvature at a
point, but we have some smearing related to the
experimantal uncertainty. This is modeled by
smearing with a test function f. For example:

B(f) = f FOR().

@ We can think of the measured observable as a
function of a perturbation of the fixed background
metric: a tentative splitinto: g, = g, + fyup0.

P00 ()]
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Locul covarinee

Intuitive idea

o In experiment, geometric structure is probed by
local observations. We have the following data:

e Some region O of spacetime where the
measurement is performed,

e An observable &, which we measure,

e We don’t measure the observable curvature at a
point, but we have some smearing related to the
experimantal uncertainty. This is modeled by
smearing with a test function f. For example:

(f) = f FRE).

@ We can think of the measured observable as a
function of a perturbation of the fixed background
metric: a tentative split into: g,,,, = S + My

P04 (F)[A]

e Diffeomorphism transformation: move our
experimental setup to a different region ©'.
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e An observable &, which we measure,
We don’t measure the observable curvature at a
point, but we have some smearing related to the
experimantal uncertainty. This is modeled by
smearing with a test function f. For example:

o) = [ 7RG
@ We can think of the measured observable as a
function of a perturbation of the fixed background
metric: a tentative split into: g, = g, + M.
e Diffeomorphism transformation: move our
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Algebraic quantum field theory (locality)

@ A convenient framework to investigate conceptual problems in
QFT is the Algebraic Quantum Field Theory (recently also
perturbative AQFT).

o A model is defined by associating to each region O of
Minkowski spacetime an algebra 2(0) of observables (a unital

involutive topological algebra, in the original framework also
C*) that can be measured in O.

Kasia Repaner QG from LCQFT
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@ A convenient framework to investigate conceptual problems in
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Algebraic quantum field theory (locality)

@ A convenient framework to investigate conceptual problems in
QFT is the Algebraic Quantum Field Theory (recently also
perturbative AQFT).

@ A model is defined by associating to each region O of
Minkowski spacetime an algebra 2A(O) of observables (a unital
involutive topological algebra, in the original framework also
C™) that can be measured in O.

@ The physical notion of subsystems
is realized by the condition of isotony,
1e.: 0y D0 =2A(0;7) DA(Oy).

/e obtain a net of algebras.
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involutive topological algebra, in the original framework also
C") that can be measured in O.

@ The physical notion of subsystems
is realized by the condition of isotony,
1e.: 0y D0 =2A(0;) DA(Oy).
/e obtain a net of algebras.

Kasia Rejzner QG from LCQFT

Pirsa: 14050004 Page 19/76



Pirsa: 14050004

Algebraic quantum field theory (locality)

@ A convenient framework to investigate conceptual problems in
QFT is the Algebraic Quantum Field Theory (recently also
perturbative AQFT).

@ A model is defined by associating to each region O of
Minkowski spacetime an algebra 2(0O) of observables (a unital
involutive topological algebra, in the original framework also
C") that can be measured in O.

@ The physical notion of subsystems
1§ realized by the condition of isotony,
ie.: 02 D 0) = A(02) D A(O)).

We obtain a net of algebras.
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Algebraic quantum field theory (locality)

@ A convenient framework to investigate conceptual problems in
QFT is the Algebraic Quantum Field Theory (recently also
perturbative AQFT).

o A model is defined by associating to each region O of
Minkowski spacetime an algebra 2(Q) of observables (a unital
involutive topological algebra, in the original framework also
C*) that can be measured in O.

@ The physical notion of subsystems
1§ realized by the condition of isotony,

e 02 D 0p = A(02) D A(O,).
We obtain a net of algebras.
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Intreshuction

Local covariince

Locally covariant quantum field theory (LCQF

e To include effects of general relativity into QFT,
one has to be able to describe quantum fields on
a general class of spacetimes. The corresponding
generalization of AQFT is called locally
covariant quantum field theory.
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Locally covariant quantum field theory (LCQFT)
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one has to be able to describe quantum fields on
a general class of spacetimes. The corresponding
generalization of AQFT is called locally
covariant quantum field theory.
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Locally covariant quantum field theory (LCQFT)

@ To include eftects of general relativity into QFT,
one has to be able to describe quantum fields on
a general class of spacetimes. The corresponding
generalization of AQFT is called locally
covarlant quantum field theory.
Consider the class of all globally hyperbolic
spacetimes M = (M, g). An embedding
Y M — N of such spacetimes is called
admissable 1f 1t 15 1sometric, orientations
preserving and causal.
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Locally covariant quantum field theory (LCQFT)

To include effects of general relativity into QFT,
one has to be able to describe quantum fields on
a general class of spacetimes. The corresponding
generalization of AQFT is called locally
covariant quantum field theory.

Consider the class of all globally hyperbolic

spacetimes M = (M, g). An embedding 2A

-~

Y M — N of such spacetimes is called
admissable 1f 1t 18 1sometric, orientations
preserving and causal.

A model in LCQFT is defined by assigning to
each spacetime M an algebra (M) and to each
admissible embedding ¢ an inclusion of
algebras v, (notion of subsystems). This has to
be done covariantly.
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Local covariance

Formulation in terms of category theory

@ A category is essentially a class of objects
together with a class of maps between them,
called morphisms.

it Rejener QG frum LCQET
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Formulation in terms of category theory

@ An LCQFT model is a covariant functor 2l between the category
of spacetimes and the category of observables. This means that
the following diagram commutes:

M, —"— M

a| E

AM;) —2Ls A(My)

@ and the covariance property,

Quyt © Q= Quproys s idy = 1dgy(r)

Kasia Rejzner QG from LCQFT

Pirsa: 14050004 Page 29/76



Introduction : o, 1
Effective quantum gravity & b
Local covariance -

Formulation in terms of category theory

@ An LCQFT model 1s a covariant functor 2 between the category
of spacetimes and the category of observables. This means that
the following diagram commutes:

M, — M

a| E

AM,) —25 A(M,)

@ and the covariance property,
Qupt O Qyy = Qyplony »  Qidy, = 1dg((ap)

holds.
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Further axioms

One can also include two further axioms which are important in QFT:
causality and time-slice axiom.
o Causality: If there exist admissible embeddings ¢y : M; — M,
J = 1,2, such that the sets ¢ (M;) and ¢»(M3) are causally
separated in M, then:

[ovg, (A(M))), g (A(M2))] = {0},

where [.,.] is the commutator of given C* algebras.

Kisia Reganer
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Local covarinnce

Building models in LCQFT

@ One of the methods to build models in LCQFT is the so called
functional approach.

@ The main idea is to model observables as functionals on the the
space E(M) of possible field configurations. For the effective
theory of gravity the configuration space is
E(M) = L((T*M)®2).

Kasin Regenor QG from LEQPT
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Building models in LCQFT

@ One of the methods to build models in LCQFT is the so called
functional approach.

@ The main idea is to model observables as functionals on the the
space E(M) of possible field configurations. For the effective
theory of gravity the configuration space is
E(M) = T((T*M)®?).
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Loeal covurinnce

Building models in LCQFT

@ One of the methods to build models in LCQFT is the so called
functional approach.

o The main idea is to model observables as functionals on the the
space E(M) of possible field configurations. For the effective
theory of gravity the configuration space is
E(M) =T((T*M)

@ On this space of functionals we introduce first the classical
dynamics by defining a Poisson structure. Next, we use the
deformation quantization to construct the non-commutative
(uantum algebra,

Kot Repener
g QG fromi LEQET . L LA L B
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Functional approach

o There are some mathematical subtleties related with this
approach. The space of field configurations is infinite
dimensional, so the space of all the functionals on it is in
principle too big.

Kasia Rejener QG from LCQIT
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Functional approach

@ There are some mathematical subtleties related with this
approach. The space of field configurations 1s infinite
dimensional, so the space of all the functionals on 1t 1s 1n
principle too big.
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Functional approach

@ There are some mathematical subtleties related with this
approach. The space of field configurations 1s infinite
dimensional, so the space of all the functionals on 1t 1s 1n
principle too big.

The first step is to restrict oneself to functionals that are smooth.
This requires some tools from calculus on infinite dimensional
VeCLor spaces.
Among all the smooth functionals we can distinguish ones that
are particularly relevant for physics. For example, we can
consider local functionals, 1.e. ones that can be written in the
form: F(h) = / f(jc(h))(x) . where his a field configuration, f
JM

1s a density-valued function on the jet bundle over M and j(h) is
the jet of A at x.

Kasia Rejzner QG from LCQFT
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Functional approach

e There are some mathematical subtleties related with this
approach. The space of field configurations is infinite
dimensional, so the space of all the functionals on it s in
principle too big.

The first step is to restrict oneself to functionals that are smooth.
This requires some tools from calculus on infinite dimensional

VECLor Spaces.

Among all the smooth functionals we can distinguish ones that
are particularly relevant for physics. For example, we can
consider local functionals, i.e. ones that can be written in the

form: F(h) = /_{U\(h))(.\'] . Where /1 is a field configuration, f
M i '

is a density-valued function on the Jjet bundle over M and ic(h) is
the jet of / at x. ‘
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Spacetime localization of a functional

e Another important property of a functional is its
spacetime localization.,

e For a point.x € M we want to know if our given
functional F is sensitive to fluctuations of field
configurations at this point.

Kasia Nejener
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Spacetime localization of a functional

o Another important property of a functional is its
spacetime localization.

e For a point.x € M we want to know if our given
functional F is sensitive to fluctuations of field
configurations at this point.
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Spacetime localization of a functional

Another important property of a functional is its
spacetime localization.

For a point x € M we want to know if our given
functional F is sensitive to fluctuations of field
configurations at this point.

If this is the case, we say that x belongs to the

spacetime support of F, i.e. x € supp(F).

More precisely:

supp F = {x € M|V neighbourhoods U of x Jhy, s configurations,
supp/ta C U such that F(hy + ha) # F(hy)) .

Kasta Hogemor qq‘fmimmu
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Spacetime localization of a functional

Another important property of a functional is its
spacetime localization.

For a point x € M we want to know if our given
functional F is sensitive to fluctuations of field
configurations at this point.

If this is the case, we say that x belongs to the

spacetime support of F, i.e. x € supp(F).

More preci

supp F = {x € M|¥ neighbourhoods U of x Jhy, ha configurations,
suppfiz C U such that F(hy + ha) # F(hy)} .

In the classical theory we will consider functionals
that are compactly supported and multilocal (i.e.
sums of finite products of local functionals).

Kasta Repener QG from LCQFT
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Spacetime localization of a functional

Another important property of a functional is its
spacetime localization,

For a point x € M we want to know if our given
functional F is sensitive to fluctuations of field
configurations at this point.

If this is the case, we say that x belongs to the
spacetime support of F, i.e. x € supp(F).

More precis

supp F = {x € M|V neighbourhoods U of x Jhy, s configurations,

supp /ta C U such that F(hy -+ ha) # F(h )} .

In the classical theory we will consider functionals
that are compactly supported and multilocal (i.e.
sums of finite products of local functionals).
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Kinematical structure

Locally covariant fields

o In the framework of LCQFT, locally
covariant fields are used to identify
observables localized in different region of
spacetime, in the absence of symmetries
(they give “names™ to observables).

Kasin Mogeiwr i mm.m
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Kinematical structume

@ In the framework of LCQFT, locally
covariant fields are used to identify
observables localized in different region of
spacetime, in the absence of symmetries
(they give “names™ to observables).

Let D (M) denote the space of test functions
supported in O, A loc. cov. field is a family
of maps ¢y : D(M) = F(M), numbered
by spacetimes M (this generalizes the notion
of Wightman's operator valued distributions)
such that: O (f)[x* /1] = P )h

(1.e. b is natural).

Kasia Repener
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Kinematical structure

Classical theory

Locally covariant fields

@ In the framework of LCQFT, locally
covariant fields are used to identify
observables localized in different region of
spacetime, in the absence of symmetries
(they give “names™ to observables).

Let D(M) denote the space of test functions
supported in 0. A loc. cov. field is a family
of maps ¢y : D(M) = F(M), numbered
by spacetimes M (this generalizes the notion
of Wightman's operator valued distributions)
such that: 0o (/)[x*h] = Ol )N

(1.e. P is natural).
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Kinematical structure

Locally covariant fields

@ In the framework of LCQFT, locally
covariant fields are used to identify
observables localized in different region of
spacetime, in the absence of symmetries
(they give “names” to observables).

Let D (M) denote the space of test functions
supported in 0. A loc. cov. ficld is a family
of maps ¢y : D(M) = F(M), numbered
by spacetimes M (this generalizes the notion
of Wightman's operator valued distributions)
such that: & (/) [x*h] = PN

(1.e. P is natural).
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Kinematical structure

Locally covariant fields

@ In the framework of LCQFT, locally
covariant fields are used to identify
observables localized in different region of
spacetime, in the absence of symmetries
(they give “names” to observables).

Let D(M) denote the space of test functions
supported in 0. A loc. cov. field is a family
of maps ®xp : D(M) = F(M), numbered
by spacetimes M (this generalizes the notion
of Wightman's operator valued distributions)
such that: Co () [x*h] = PN

(i.e. b 1s natural).
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Locally covariant fields

@ In the framework of LCQFT, locally
covariant fields are used to identify
observables localized in different region of
spacetime, in the absence of symmetries
(they give “names” to observables).

Let D (M) denote the space of test functions
supported in 0. A loc. cov. field is a family
of maps ¢y : D(M) = F(M), numbered
by spacetimes M (this generalizes the notion
of Wightman's operator valued distributions)
such that: ¢ () [x*h] = PN

(i.e. P is natural).
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Kinematical struciure

Locally covariant fields

@ In the framework of LCQFT, locally
covariant fields are used to identify
observables localized in different region of
spacetime, in the absence of symmetries
(they give “names” to observables).

Let D (M) denote the space of test functions
supported in 0. A loc, cov. field is a family
of maps ¢y : D(M) = F(M), numbered
by spacetimes M (this generalizes the notion
of Wightman's operator valued distributions)
such that: P ()[x*h] = DN

(i.e. P 1s natural).
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Kinematical structure

Classic

Locally covariant fields

@ In the framework of LCQFT, locally
covariant fields are used to identify
observables localized in different region of
spacetime, in the absence of symmetries
(they give “names™ to observables).

Let D (M) denote the space of test functions
supported in 0. A loc. cov. field is a family
of maps ¢y : D(M) = F(M), numbered
by spacetimes M (this generalizes the notion
of Wightman's operator valued distributions)
such that: 0o ()[x*h] = DN

(i.e. ¢ is natural).
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Kinematical structure

Locally covariant fields

@ In the framework of LCQFT, locally
covariant fields are used to identify
observables localized in different region of
spacetime, in the absence of symmetries
(they give “names™ to observables).

Let D (M) denote the space of test functions
supported in 0. A loc. cov. field is a family
of maps ¢yp : D(M) = F(M), numbered
by spacetimes M (this generalizes the notion
of Wightman's operator valued distributions)
such that: 0o (f)[x*/] = P\ S)]h

(1.e. ¢ is natural).
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Diffeomorphism invariance

o Consider a field, which is given by a family
of maps Pbyp : D(N) = F(M) that satisfy
the naturality condition,

@ For each M we can choose some
diffeomorphism oy and transform ¢ to a
new field by relabeling maps By

('Ttl’}(-”-.t:ili'] = (I‘[H.n\r.ullnf-']'

where & denotes the family (ea)Me0bj(Loc)-
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Symmelries
Classical theory

Diffeomorphism invariance

o Consider a field. which is given by a family
of maps byg : D(N) = F(M) that satisfy
the naturality condition.

@ For each M we can choose some
diffeomorphism ay and transform ¢ to a
new field by relabeling maps By

(fT‘]’):.tf._u:l &) = (I'(.I!.u\,_‘ual.f.']-

where @ denotes the family (cov)xteoi(Loc)-
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Symmetries
Clswcal theory

Diffeomorphism invariance

o Consider a field. which is given by a family
of maps Pyg : D(NM) = F(M) that satisfy
the naturality condition.

@ For each M we can choose some
diffeomorphism oo and transform ¢ to a
new field by relabeling maps $:

(@P)1,00[8) = Pat,anca 8]

where @ denotes the family (oo ) yeonj(L

oc)-
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Symmeines
Classical theory b

Diffeomorphism invariance

o Consider a field. which is given by a family
of maps Py : D(M) = F(M) that satisfy
the naturality condition.
@ For each M we can choose some
diffeomorphism ay and transform ¢ to a
new field by relabeling maps By
(@P) (a1, [8] = Pt [8] L <
\ ll)( Mo \,|_u}(f,[‘|:'l

where & denotes the family (eat)xteobi(Loc)-

; p g e (g
e From the naturality condition follows that &0 (@ac.flase.@]
(GP) (a1,) (1) [8] = Prag gy (3¢ o ) [ E]
always holds (diffeomorphism covariance),
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Symmeiries
Classical theory “ "

Diffeomorphism invariance

o Consider a field, which is given by a family
of maps (Pyg : D(NM) = F(M) that satisfy
the naturality condition.

For each M we can choose some
diffeomorphism axp and transform & o a
new field by relabeling maps By
(@P) (w0 [8) = Plat.ane. 0 [8] - ( 7
\\. 'l]“f o _U(f’[l:'l

where @ denotes the family (co)teobi(Loc)- -

L . (a=! Nl=! %
From the naturality condition follows thar 005 «lase.@]
(@P) (41,0 (1) [&] = Par) (5 o) [0 E]
always holds (diffeomorphism covariance),
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Symnwiries
Classical thevry

Diffeomorphism invariance

o Consider a field, which is given by a family
of maps Py : D(M) = F(M) that satisfy
the naturality condition.

For each M we can choose some
diffeomorphism ay and transform & to a
new field by relabeling maps $y:

(@P) (.0 [8] = Pias.ane. 8] -

where & denotes the family (ea)xe0bj(Loc)-

b =t ]
From the naturality condition follows thar @005 < lase.]
(AP) (ar,0) (N[8] = Ppar ey (a5 ) 2 E]
always holds (diffeomorphism covariance),
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. Kinematical structure (L K
. Symmetries ;
Classical theor ; e
Y Background independence - R

Diffeomorphism invariance

@ Let us now look at the infinitesimal version, 1.e. consider
ay = exp(&nt), v € X(M) = I'(TM). The family £ of “gauge”
parameters acts on a field ¢ by

(€D )m.o) )18

<(‘|){:'l/.1:3(./‘) ){ ) 8l rf

e Diffeomorphism invariance is the statement that: £& = (),

e Example: / R|g|/ d volyy 5 1s diffeomorphism invariant, but

/ R(glf d vol(y ) is not.
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¥
Symnmwines

Diffeomorphism invariance

o Let us now look at the infinitesimal version, i.e. consider
anr = exp(&x). &t € X(M) = I'(T™M). The family & of “gauge™
parameters acts on a field ¢ by

IL"|'|,1; ..‘f_lrl;_!"

o Diffeomorphism invariance is the statement that: £ = (),

o Example: / Riglf d vol iy 4 is diffeomorphism invariant, but

[R[lf:[fd VOl (4 ¢ 18 nOL,
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Symmetne
Classical (heory o Hib ey

Diffeomorphism invariance

o Let us now look at the infinitesimal version, i.e. consider
o = exp(&x). & € X(M) = I'(T™M). The family & of “gauge™
parameters acts on a field & by
E0) ()8}
\_‘I“ \/ ._.‘U })! ] ':.E_’

o Diffeomorphism invariance is the statement that: £& = (),

e Example: / Rig)f d voliy g is diffeomorphism invariant, but

/RI.QUU \'Ulr__u ¢) 1S not.

Kasta Rejener Qi from LOQFT

Page 70/76




Pirsa: 14050004

Classical theory Background independence

Background independence

o Let My = (M,g) and Mz = (M, g2),
where (g1, and (g2),.. differ by a
(compactly supported) symmetric tensor
I, with
supp(h) NJF(NL)NJ™(N2) =0,

ko, 05y
O (x) = 01,10, (x) li=0
valued distribution which is covariantly
conserved.

15 a derivation

The infinitesimal version of the
background independence is a
condition: ©,,, = (.
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Appemlin

Conclusions

e We have constructed a consistent model of perturbative quantum
gravity within the framework of locally covariant quantum fields
theory.
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Cllssicul (heory e kgronnd independence

Background independence

o Let My = (M,g) and M> = (M, g2),
where (g1); and (g2),.. differ by a
(compactly supported) symmetric tensor
I, With
supp(h) NJF(NL)NJ™(N2) =0,
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Classical theory Hackgroum] independence

Background independence

o Let My = (M. gy) and M = (M, g2),
where (g1), and (g2),.. differ by a
(compactly supported) symmetric tensor
e with
supp(h) NJF(NL)NJ™(N2) = 0,
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Ghemsient {1wary Ruckground independence

Background independence

Theorem [Brunetti, Fredenhagen, K.R. 2013

The functional derivative ©,,,, of the relative Cauchy evolution can be
expressed as

ejw("'.\[. U)) ‘g‘ [('I'.\h U.))mt- {T;m)ml] ' i
!

where T}, is the stress-energy tensor of the extended action
(including ghosts and other non-physical degrees of freedom) and the

subscript “int™ means renormalized interacting fields.
e ———————————————— e s i S

I
I
|
|
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Thank you for your attention!
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