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Abstract: <span>The entanglement entropy of the vacuum of a quantum field theory contains information about physics at all scales and is UV
sensitive. A ssimple refinement of entanglement entropy gets rid of its UV divergence, and alows us to extract entanglement per scale. In two and
three spacetime dimensions this quantity can be used as a proxy for the number of degrees of freedom, as it decreases under RG flow. We
investigate its behavior around fixed points, and reveal its interesting analytic structure in the space of couplings.</span>
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Introduction
* Counting degrees of freedom
* Improved understanding of RG

Renormalized entanglement entropy
* UV finiteness

* Entanglement at a scale

* Monotonicity

Behavior near fixed points
* UV fixed points
* IR behavior from matched series expansions

Conclusions
* Entanglement entropy probes RG sensitively
* Challenges
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Wilsonian renormalization group

Strongly interacting systems:

Micro description (UV). > Long-wavelength description (IR)

Guesswork

* QCD: Quarks, gluons » Pions
Chiral SB

* Intuition: number of degrees of freedom decreases under RG
Can we formalize this intuition?
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Entanglement entropy and the number of degrees
of freedom (3d example)

Understanding entanglement leads to an improved
picture of RG

* Inalocal theory: H=Hy @Hy Y —av

1%
* Reduced density matrix: p, = Try [0) (0 v
* Entanglement entropy: Sy = —Try p,. log p,
. , ax
* Area and universal term: Sy = # = v
(
* ForadiskinaCFT: Fisk log Zgs
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Entanglement entropy and the number of degrees
of freedom (3d example)

Understanding entanglement leads to an improved
picture of RG

* Inalocal theory: H=Hy @Hy E=0¥

1%
» Reduced density matrix: p, = Try |0) (0] v
* Entanglement entropy: Sy Try p, log p,
* Area and universal term: Sy = # ‘L‘\: Fv
* ForadiskinaCFT: Fyisk log Z g

Proposal:

(R_ i 1) disk
dF (R
0
dR

Captures the intuition of decreasing number of degrees of freedom under RG.

I/\
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Improved picture of RG

e UV CFT
H
UV CET
k]
v
g1 .
®
IR CFT
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Improved picture of RG

e UV CFT
B
UV CET
B
v
g1 P
®
IR CFT
F(g)

g1
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Improved picture of RG

o UV CFT
»
UV CET
®
v
g1 R )
L )
IR CFT
F(g)

g1
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Applications
Strongly interacting systems:
Micro description (UV) > Long-wavelength description (IR)

* The F-theorem provides fundamental constraints:

F(s) > F(e)

Guesswork
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Applications
Strongly interacting systems:
Micro description (UV) > Long-wavelength description (IR)

* The F-theorem provides fundamental constraints:

F(e) > F(e)

Guesswork

* Confinement in 3d gauge theories
» QED, with N; 2 12 fermion flavors deconfines
» Detailed analysis of the dynamics gives agreement

* Phase transitions

: QcCP .
Topological Antiferromagnet

- >

» @ cannot be the critical O(3) model
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Outline

Renormalized entanglement entropy
* UV finiteness

* Entanglement at a scale

* Monotonicity
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Entanglement entropy

Entanglement entropy (EE) depends on physics at
all length scales

* Dominated by short distance correlations

Ay
Sv=#g5+. .. V o
ga—= ¢ 5
* |ll-defined in the continuum limit

* Common practice: subtract UV divergent parts

* After subtraction could still depend on d.o.f. at
much smaller scales than size of V
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Entanglement entropy

Entanglement entropy (EE) depends on physics at
all length scales

* Dominated by short distance correlations

Ay

Sy = # sd—z T V e

* |ll-defined in the continuum limit
* Common practice: subtract UV divergent parts

* After subtraction could still depend on d.o.f. at
much smaller scales than size of V

d=3 scalar: A CFT to CFT flow would give (d=3):
s ™ 1 Sﬁnite
9 R AR SEER Kl R I
scalar (m.F) X 67" 240 mR © 1 .
* At long distances this is an empty theory, —Fyv

we would have liked EE to go to zero.
* Redefining the cutoff by

d=>6(1+mé+...)

In the IR we don’t get the F; of the IR
would change the result. CFT.
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Renormalized entanglement entropy

A CFT to CFT flow would give (d=3):
o Convert by S3
finite

. . A E
A taking: p

(Rl _1)s
—Fyv }H”I) :

Frr

In the IR we don’t get the F, of the IR CFT.
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Renormalized entanglement entropy

REE has the following attractive properties:
1. Itis UV finite in the continuum limit.
* The divergence is coming from local, cutoff scale physics around Z.

,S'(:‘:) — / (f”, 2(}' \/);1'1(1\’1::'1-/)'!“')
JE

div

(2) y d—4

* From Sy = Sy valid for pure states: S = a1 R"™% + ao R g e
* For a CFT fixed point
yd —2 , d—1 (% 5
E e +.. .+ £ 4+ (-1) sy 4%y odd d
,’r(f\j) 9y on d I
! | i R R? | ( I 'J‘,.”’ _(-\':)l o L it 4 ‘*f; e S l
=z 57 )2 s, log 5 T const + &5 evel (
(8]

* For arenormalizable flow:

I . i (e
ay )_"!'——th(;m.,) . hi(pdp) = co r'g(;m.,)'” a) ...
0
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Renormalized entanglement entropy

REE has the following attractive properties:
1. Itis UV finite in the continuum limit.
* The divergence is coming from local, cutoff scale physics around Z.

J

div

(Z) d—4

* From Sy = Sy valid for pure states: S = a1 R™% + ao R e
* For a CFT fixed point
yd —2 3 d—1 \; Y
Bt o+ B (-T2 4. odd d
Sf(:‘:) 0 on d I
l R 4.+ 84 ( l)d"u s log £ + const + % +.-.  even d
A:: = "Sl;; Tvd S 4y by RZ
* For arenormalizable flow:
| .
Y Y - \2(d
o 31 (pdo) hi(pdg) = co + eo(pdo)? =2 4 ..

(5“
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Renormalized entanglement entropy

REE has the following attractive properties:
1. Itis UV finite in the continuum limit.
* The divergence is coming from local, cutoff scale physics around Z.

,Sr“:) RIS / (f”, 2|"}' \//.}_I"(I\’uh-h-ul’:)
5T

div
‘ . ; ¥h> -
* From Sy = Sy valid for pure states: S5 = a1 RY™2 + ap R4 + .
* For a CFT fixed point
yd —2 3 d \; &
‘ !.',; o e ;'—' F(—1) 2 sff } | %.l fooe odd d
S‘(f‘a) dn: ‘ {”‘ s a
l R 4. + 84 ( I)J:" s Mog £ + const + 28 + -+ even d
‘*;: ‘ "Sl;; “d S 4y i RZ
* For arenormalizable flow:
I 9
. . - \2(d—A
ay ~ ,_,/:1(;“5.,) . hi(pdo) = co + ca(pudp)=! ) 4 ...

(5“
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Renormalized entanglement entropy

REE has the following attractive properties:
1. Itis UV finite in the continuum limit.
* The divergence is coming from local, cutoff scale physics around Z.

S

() |

* From Sy = Sy valid for pure states: Sy = aj R + apR™4 + ...
* For a CFT fixed point
> —2 3 d \; f-|
R+ B (—1) G )+ odd d
y(23) 9y on ( !
> R oo 4 R F( I)J"l s*Nog £ 4+ const 4 % .-+ even d
‘*:: . "Sl;; I N S 4y s R*
* For arenormalizable flow:
| o
Y Y Y & d .A
@] . L’hl(/m”) ’ hi(pdo) = co + ca(pdg) ( ) ...
90

S

For a CFT it is given by an R-independent constant, -ﬂ'f,’

For a renormalizable quantum field theory, it interpolates between the Hf,“} values of
the UV and IR fixed points as R is increased from zero to infinity.

4. Itis most sensitive to degrees of freedom at scale R.
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Renormalized entanglement entropy

A CFT to CFT flow would give (d=3):

Sﬁnit(. tcokr.lve_rt by SA:% :
A aKing: Firy
(RS _1)s
—-Fyv }H”l) '

In the IR we don’t get the F,, of the IR CFT.

Introduce renormalized entanglement entropy (REE):
. dS(R) () d -
. =2,3: & l) 1) . S, ; ; [ ,L'l'['.} ) .
d=2,3: S2(R) = R IR 5 (I7) R (1?)

* Ingeneral:

ﬁ(-\:)(llj) { (d l_’)” (h)i;::f I) (l{r;f':' .,)) Y (l])r;f'a' ({/ "'))) 'L;[\:]( {) (I {Hl(l

i | o i/ ‘ 1! ‘ (3 ,
CEIIRARTE (Rip —2) - (Rgp — (d—2)) S™(R) d even
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Renormalized entanglement entropy

REE has the following attractive properties:
1. Itis UV finite in the continuum limit.
* The divergence is coming from local, cutoff scale physics around Z.

,Sr,(lri‘i-) — / (/”, 2!"}’ \/i;["(l\";i,.h-uh)
JXB

() |

* From Sy = Sy valid for pure states: Sy = a1 R + ap R4 4 - -
* For a CFT fixed point
R%—* R "“, _(‘\J} dg
o) e SR ~ F(=1) "2y )+ %%+ odd d
i hﬂf .: I v os * h)-l I ( l .j‘.ll (\:) l o R * g ‘t I A.'Lj I o WY l
5T 52 ) 2 Sq Jog - const R even (
* For arenormalizable flow:
I .
- » - 2l
ay _‘!";_,/:1(;1'0.,) , hi(pdg) = co + ca(pdo) d-a) .

‘0
-

For a CFT it is given by an R-independent constant, Hf,’

For a renormalizable quantum field theory, it interpolates between the .«f,“} values of
the UV and IR fixed points as R is increased from zero to infinity.

4. Itis most sensitive to degrees of freedom at scale R.
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The number of degrees of freedom

RG intuitively leads to the loss of degrees of freedom:
* Afield contributes to the count at scales below its Compton wavelenght.

* |ts effects only manifest in corrections to parameters at distances longer than its
wavelenght, and the field doesn’t contribute to the count.

In d=2 the Zamolodchikov c-theorem quantifies the RG intuition:
* ccan beisolated from many quantities, e.g. from EE

, C R
,5(1[9']' — l()}_!,' —
(5”

* The c-theorem can also be proven using the strong subadditivity of EE

In d>2 universal terms in EE across S92 have been identified as satisfying: cov > ¢rp

In d=4 the universal term equals the “a” central charge

In d=3 the universal term equals the S? free energy

REE can provide an interpolating function between ¢, and ¢

* Isit positive and monotonic?
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The number of degrees of freedom

Testing monotonicity (d=3):
* Free theories

7s T
e e N
0.05
0.04
i 0.10
0.02
001F 00000 e 0.05 )

0.20

0.15

M --..-‘._‘l..- _—
0.00
0 I 2 3 4mR 05 10 15 20 25 30 A,SNR
* Holographic examples
— Variety of examples 254(R)/K

— For closely separated fixed points can prove
monotonicity for all d

* Casini and Huerta proved monotonicity
subsequently

* REE is neither positive nor monotonic in higher
dimensions
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Outline

Behavior near fixed points
* UV fixed points
* IR behavior from matched series expansions
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Behavior in the vicinity of fixed points

Survey of results
* Naive field theory expectation:

UV .

e AR RPN L RS0

Si(R) = L R G e
“d (AR)2(Aa—d) 1
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Behavior in the vicinity of fixed points

Survey of results
* Naive field theory expectation:

UV ,
s¢™V) — A(A)(uR)24-D) 4 ..., R0
Si(R) =4 (r) B(A)
[ S ‘ By : ‘ I
“d (AR)2(A—d) ey R — o
* Refinement: the geometric expansion allows for terms
- e
{“” T GRYP T Sl R — oc
S50 .H‘l : e W
(f1lr)? i3 (jrRR)1 r even d

We will see these terms in holographic computations.

* Perturbative corrections to the reduced density matrix of the sphere also produce the
naive result, 1/R terms are a challenge.

Pirsa: 14040144 Page 35/49



Behavior in the vicinity of fixed points

Survey of results
* Naive field theory expectation:

S4(R) {”f/lv\’} I /'1(*5)(;!1?)2(’! A)+..., R-0
e R -+ o0
* Refinement: the geometric expansion allows for terms
{;ﬂ? T (7,:;"}}? odd d T
(,-,H,Ir',:): + U,'jf,). +..+ evend

We will see these terms in holographic computations.

* Perturbative corrections to the reduced density matrix of the sphere also produce the
naive result, 1/R terms are a challenge.
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Behavior in the vicinity of fixed points

Survey of results
* Naive field theory expectation:

UV 2(d—
sy ' —AA)puRMD 'y, .., R=0
Sa(R) =14 (R) B(A)
( S ; R - 72 ) ) ‘ .
Sy GRPG=D ey R — o
* Refinement: the geometric expansion allows for terms
2L Sd . odd d
{w;, AT . R oo
(f1lr)? + ()4 R even d

We will see these terms in holographic computations.

* Perturbative corrections to the reduced density matrix of the sphere also produce the
naive result, 1/R terms are a challenge.
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Behavior in the vicinity of fixed points

Survey of results

Naive field theory expectation:

g {.qf,"” — AN RPN R0
S e R
Refinement: the geometric expansion allows for terms
{”Uﬁ + ;:H - + odd d L
t;‘:}m’)'i 5 (;r}fw' +-+ evend

We will see these terms in holographic computations.

Perturbative corrections to the reduced density matrix of the sphere also produce the
naive result, 1/R terms are a challenge.

Translating to coupling space:

&V = A(A)g2, (M), A o o
. 1/ (A—=d)
Call 51 AT DA) + - odd d
1(9) h_‘(!]li} i /3(3)(; H'("'\) Ly "?;"f; ,;)( ) odd ¢ A0
B 529ef f (\) oo even d

Stationarity at the IR fixed point depends on the dimension of the leading irrelevant
operator!
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Behavior in the vicinity of fixed points

Survey of results

Naive field theory expectation:

sV — A(A)pR)X4-2) 4 ..., R—0
Sa(R) ={ R) . B :

Sy WJF R — o0
Refinement: the geometric expansion allows for terms
{I,Lb + (;}ﬁ{ + .. odd d i

”-,‘j';): + (”'31‘,}. + .-+ evend

We will see these terms in holographic computations.

Perturbative corrections to the reduced density matrix of the sphere also produce the
naive result, 1/R terms are a challenge.

Translating to coupling space:

Hfil-\'} l(A){l{‘J!](‘\) ‘\ y o

] ~ 1 o
Calg) H_(]H} A l {-ﬂﬂr?{ﬁ )(;"\) Feeeoodd d

S, } /g(A)(}‘J(‘\) oo 3 j"\ >(]
: 1 r”(;\) e even d

Stationarity at the IR fixed point depends on the dimension of the leading irrelevant
operator!
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Behavior in the vicinity of fixed points

* Free massive theories defy these expectations in d=2,3:

| |
free scalar : So(R == ——— — + ...
2(R) 3 log(m?R?)
o A l gy : S
Dirac fermion : Sa2(R) = 3 Am2R? lug‘) (m‘)h-’) i
Fs

L T A
0.05 \

0.04

0.03

0.02 \

oor T

0.00 nl
0 | 2 3 4 MR

* Not stationary at UV fixed point.
* IR behavior of a gapped theory:
— d=2 decays exponentially
— d>21/Rinoddd, 1/R?in even d
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Behavior in the vicinity of fixed points

* Free massive theories defy these expectations in d=2,3:

| |
free scalar : SRy ==+ ——- +--.
2(R) 3 log(m2R?)
e & | b : i
Dirac fermion : Sa2(R) = 3 Am2R? lug‘) (m"h’-’) et
Fs
0 R R A SR S
0.05
0.04
0.03
0.02
001 e N
0
0. ”() | 5 3 4 mR

* Not stationary at UV fixed point.
* IR behavior of a gapped theory:
— d=2 decays exponentially
— d>21/Rinoddd, 1/R?in even d
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Holographic calculations

Holographically: CFT to CFT RG flow = AdS to AdS domain wall

- i £ )
= /‘"( t2 + dp? + p2dQ2 +d""') 1
B8 — — | —¢ ap PrAYly_o - 2 /72
2 : f(z) L°/LiR
* Closely separated fixed point: | __/
f(z)=1+4+¢€g(2)+... > 2

* The Ryu-Takayanagi formula can be evaluated perturbatively, giving a simple formula
for REE:

-: {] 9 e ” 'I"
) " ) & . [ ‘ o (l\
hf l\ / (’l {—]— fﬁu t — ‘ = é_‘;( ll)) .'w'.({l V) / fll (l( :')
Js d—1 / min ' ll) Jo
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Holographic calculations

Holographically: CFT to CFT RG flow = AdS to AdS domain wall

., s
152 L"( t2 + dp?® + p2dQ2 +d'°") 1
Ba — — ) —¢ ap PraAdly_o - o jainy
z- ; f(z) L°/LTR
* Closely separated fixed point: | __/
f(z)=1+4+¢€g(2)+... > 2

* The Ryu-Takayanagi formula can be evaluated perturbatively, giving a simple formula
for REE:

-" {] 9 e > '["
) I ) & . [ ~. Ty p (l\
S =K / dz { 7 P2+ = ‘ = 53(R) -“'-(;1 ¥l / dz g(z)
JS A I / min ' ll) Jo
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Holographic calculations

Holographically: CFT to CFT RG flow = AdS to AdS domain wall

. i 1
= L"( t2 + dp? + p2dQ22 +d'°") 1
g8 — ——& | —¢ ap Pradly_o T S
“ : f(z) L®/LTR
* Closely separated fixed point: | __/
f(z)=14+¢€g(2)+... > 2

* The Ryu-Takayanagi formula can be evaluated perturbatively, giving a simple formula
for REE:

v 2 ”l D) - R
) 1 ) - ) [ - ™/ fl\
S=K / dz {d | \/;J’-J b — ‘ | = 153(R) .s-_.({l V) ) / dz g(z)
Jo ~ / min ll JO

* Monotinicity is trivial from the Null Energy Condition, ¢g(z) > 0

I\ (I\. 9
N For small R: S;;(H) -*;(;[ V) l""‘“‘l‘“‘)—"(}!lf)-“ ey @ 3 A
Z(Y
K 1 Ks ‘
* ForlargeR: S3(R) PO . . — 4 - 4 i ST a=A-3
v I = 2a (pRR)=° R

81 / dz zg'(2)
Jo
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Holographic calculations

Holographically: CFT to CFT RG flow = AdS to AdS domain wall

. di
= ""( t2 + dp?® + p2dQ2 +d'°") 1
e — ap PrAYly_o : 2 ;792
&5 : f(z) L®/LTR
* Closely separated fixed point: | __/
f(z)=1+4+¢€g(2)+... > 2

* The Ryu-Takayanagi formula can be evaluated perturbatively, giving a simple formula
for REE:

2 del [ - R
) m ) - ) [ - ™/ fl\
S=K / dz !,,,r : \/;J’-J - — ‘ . —> S3(R) -“':(41 V) , / dzg(z)
Jo s / 1nin ]I JO

* Monotinicity is trivial from the Null Energy Condition, ¢g(z) > 0

"V e\ 5
. For small R: S;;(H) -*;(;[ V) l"‘"i"—‘)—“(}lll))-“ e @ 3 A
LY
K 1 K s ‘
* ForlargeR: S3(R) IR | =5 . — e o it R a=A-3
v I =20 (pRR)= R

S / dz zg'(2)
Jo
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Holographic calculations

* Same results apply to arbitrary RG flows between fixed points, except that

2

8] = dz - drn — - —
= Vi) [/ e \/_,-(,.)] i

* The methods, however are different: matched series expansions

» p

[

o

@

c

m

(-9

b

LY

>

=

h
4 Matching region
c
=]
‘B
c
"
Q
>
L1}
«
"
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Holographic calculations

* Same results apply to arbitrary RG flows between fixed points, except that

S1 = (’,‘_; e (l - il ——
1 -/n VI(z) [/ ( l""\/'/'(l')] e

* The methods, however are different: matched series expansions
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Holographic calculations

* Same results apply to arbitrary RG flows between fixed points, except that

2

* The methods, however are different: matched series expansions
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Conclusions and outlook

REE is a sensitive probe of RG flows
* Height function on coupling space in d=2,3
* Stationarity near an IR fixed point is decided by the dimension of the leading irrelevant

operator
82 22
F ' - ' F
21 81

Field theory understanding is in its infancy

*  Why do free massive scalars give non-stationary REE?
*  What gives the 1/R term near an IR fixed point?

* Continuum definition of REE?
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