Title: Categories of Convex Sets and C*-Algebras

Date: Apr 15, 2014 03:30 PM

URL: http://pirsa.org/14040140

Abstract: $\langle span \rangle$ The start of the talk will be an outline how the ordinary notions of quantum theory translate into the category of C*-algebras, where there are several possible choices of morphisms. The second half will relate this to a category of convex sets used as state spaces. Alfsen and Shultz have characterized the convex sets arising from state spaces C*-algebras and this result can be applied to get a categorical equivalence between C*-algebras and state spaces of C*-algebras which is a generalization of the equivalence between the Schroedinger and Heisenberg pictures.

Categories of Convex Sets and C* Algebras

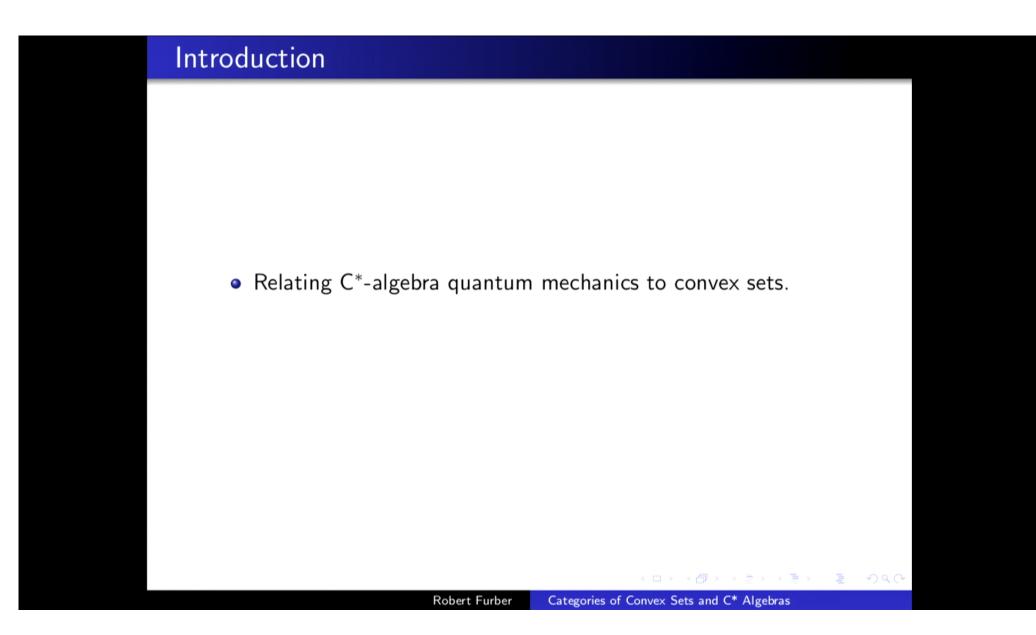
Robert Furber

Radboud University Nijmegen

15th April, 2014

Robert Furber

Categories of Convex Sets and C* Algebras



C*-algebras

- In this context "algebra" means a vector space A in which the vectors can be multiplied.
- Additionally the structure of a map -* : A → A
 that reverses the order of multiplication.
- Norm that works like the operator norm.
- An axiomatization of rings of operators on a Hilbert space. Enough axioms to make things work.
- The usual terminology for operators can be translated, *e.g.* unitary, positive, self-adjoint, projection etc.
- Commutative refers to this multiplication.
- Examples: $B(\mathcal{H})$, \mathbb{C}^n , M_n , C(X).

Robert Furber

Categories of Convex Sets and C* Algebras

・注 ・ 王・ 王・ のくで

Possible choices of morphisms

- *-homomorphisms.
- Completely positive maps preserving unit.
- Positive maps preserving unit.

(日) (四) (四) (四) (四)

Robert Furber

Categories of Convex Sets and C* Algebras

Ordinary quantum stuff in terms of (maps of) C*-algebras

• Each unitary u defines a map $B(\mathcal{H}) o B(\mathcal{H})$ by

 $a\mapsto u^*au$

and this map is a *-homomorphism. This is the usual time evolution in the Heisenberg picture.

Robert Furber C

Categories of Convex Sets and C* Algebras

・注入 本語と 語 のべつ

Ordinary quantum stuff in terms of (maps of) C*-algebras

• Each unitary u defines a map $B(\mathcal{H}) o B(\mathcal{H})$ by

 $a\mapsto u^*au$

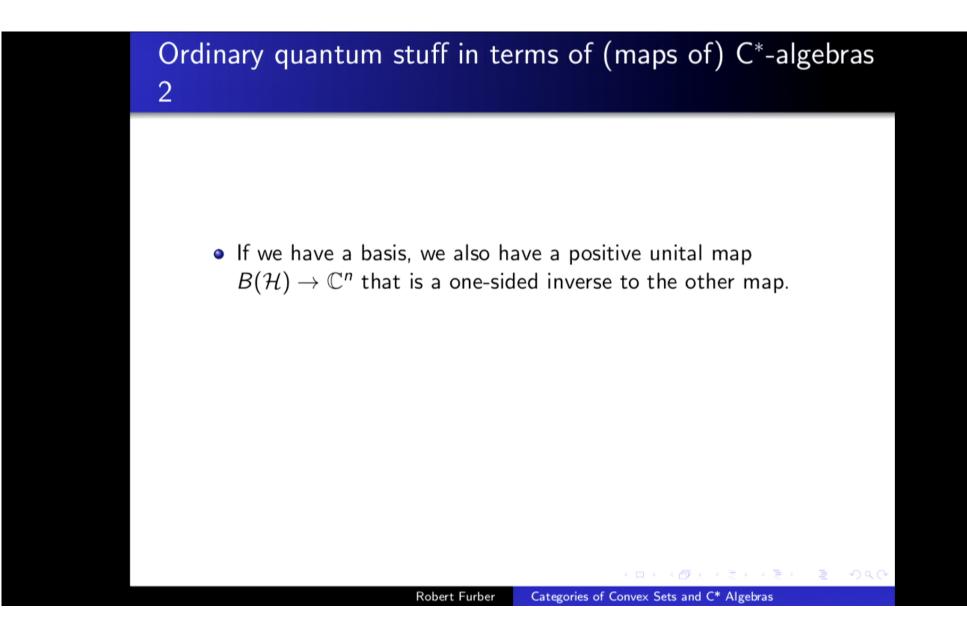
and this map is a *-homomorphism. This is the usual time evolution in the Heisenberg picture.

- POVMs on a finite set correspond to positive unital maps
 Cⁿ → B(H)
- POVMs on a space X correspond to positive unital maps C(X) → B(H).
- PVM on a finite set correspond to *-homomorphisms
 Cⁿ → B(H).

Robert Furber

Categories of Convex Sets and C* Algebras

不通り 不通り 一直 しのべん

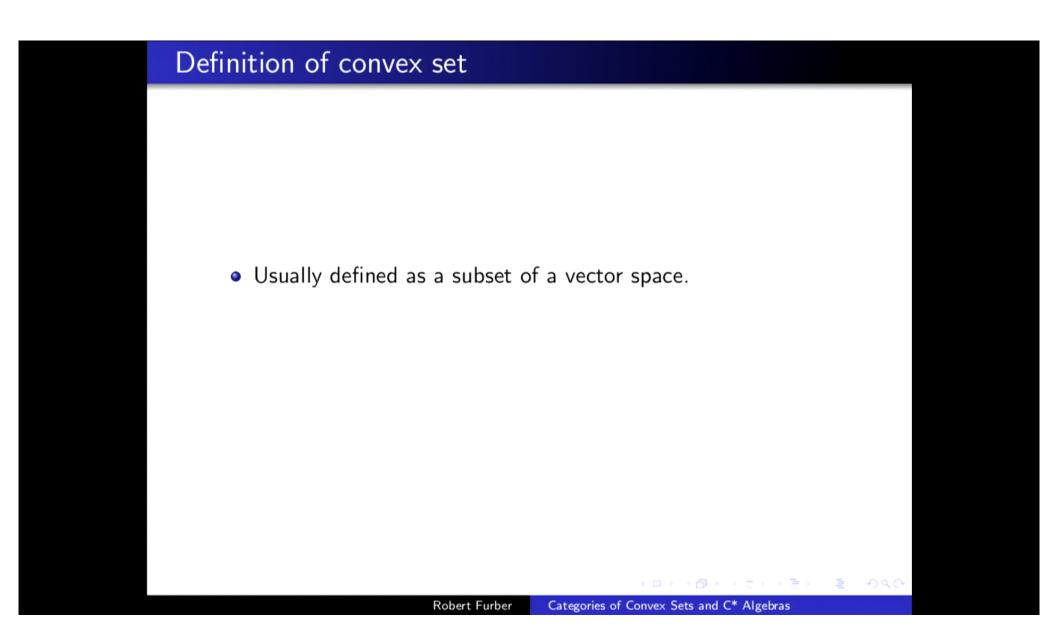


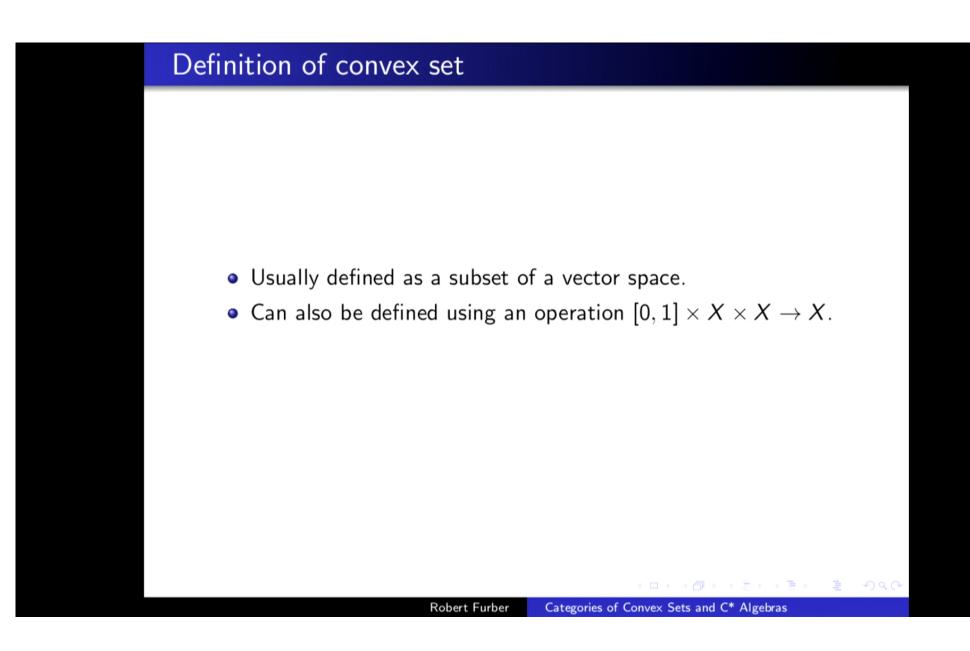
Relationship to convex sets

• On each C^* -algebra A, we can take its state space, the positive unital maps $A \to \mathbb{C}$.

Robert Furber Categories of Convex Sets and C* Algebras

御人 不満入 不通入 一直 のべの





Convexity monad

- An advantage of this is that we can define algebraic structures in other categories than **Set**.
- To each (compact Hausdorff) space X, we define $\mathcal{R}(X)$ to be the space of measures on X. This is a monad.
- If on a convex subset X of a vector space we can define the centre of mass of a measure, we can define a continuous map α : R(X) → X that maps a measure to its centre of mass.
- In general we take "convex set" to refer to an algebra of *R*,
 i.e. a map α : *R*(X) → X.
- Every algebra can be concretely represented on a topological vector space such that α becomes centre of mass. [Ś74].

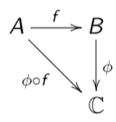
Robert Furber

Categories of Convex Sets and C* Algebras

とくほとくほど ほうのへの

State spaces

- If we take the state space S(A) of a C*-algebra A, we get a convex set of this type.
- Given a positive unital map $f : A \to B$, we get a \mathcal{R} -algebra map $S(f) : S(B) \to S(A)$ as follows:



• We have a functor.

- For the time evolution in the Heisenberg picture
 f: B(H) → B(H), S(f) gives the corresponding time
 evolution on states, in the Schrödinger picture (on density
 matrices rather than unit vectors).
- For a P(O)VM $f : C(X) \to B(\mathcal{H}), S(f)$ turns states into measures on X. This is the Born rule.
- For the projection maps $p: B(\mathcal{H}) \to C(X), S(p)$ turns \mathbb{P}

Robert Furber Categories of Convex Sets and C* Algebras

• For commutative C^* -algebras, we can use the notion of free algebras that is intrinsic to the monad \mathcal{R} .

Robert Furber

Categories of Convex Sets and C* Algebras

・ロト ・御 ト ・ 酒 ト ・ 酒 ト ・ 酒 ・ うへで

Freeness

- For commutative C*-algebras, we can use the notion of free algebras that is intrinsic to the monad \mathcal{R} .
- A free algebra is one of the form T(X), where the map $\mu_X : T^2(X) \to T(X)$ is part of the structure of the monad.

Robert Furber

Categories of Convex Sets and C* Algebras

御を * 唐を * 唐を 「唐」 の々で

