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Abstract: <span>We propose a hon-commutative extension of the Pauli stabilizer formalism. The aim is to describe a class of many-body quantum
states which is richer than the standard Pauli stabilizer states. In our framework, stabilizer operators are tensor products of single-qubit operators
drawn from the group {\alphal, X,S}, where \apha=e™{i\pi/4} and S=diag(1,i). We provide techniques to efficiently compute various properties,
related to e.g. bipartite entanglement, expectation values of local observables, preparation by means of quantum circuits, parent Hamiltonians etc.
We also highlight significant differences compared to the Pauli stabilizer formalism. In particular we give examples of statesin our formalism which
cannot arise in the Pauli stabilizer formalism, such as topological models that supports non-abelian anyons. Thisis ajoint work with O. Buerschaper
and M. van den Nest.</span>
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onn quitS: p;, — <, X Z){-;--n
_' 4 . consider (g1, - - - gm) C Py
) = [¥) Pauli

We call the state (subspace) satisfies 9;
stabilizer state (code)

Gottesman 1997
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on n qubits: P, = (i, X, Z)®"
| . consider (g1, - - gm) C Pn,
We call the state (subspace) satisfies 9;v) = [¢) Pauli
stabilizer state (code)

An example: g1 = Z2Z1,go = 127,93 = XXX
The state being |000) + [111)

Gottesman 1997
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Study of error correction
Description of quantum state (e.g. cluster state)

Multipartite entanglement (e.g. graph states, entropy
inequality)
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A (strictly) larger class compared to PSF?

Much larger?

Computational efficiency?
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1=X558°50X® X, The phase (—1)*1%2%2
=53 X5 X®S® X, M it cannot b_e
B3=5"05XRXX®SH. Stab!l!zed oy Paull
stabilizers.
' o Not equivalent to Pauli
V)= D (=1 ey @y, . stabilizer states even with
i single qubit basis changes.
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Defined on a honeycomb lattice.
Support different anyons compared to toric code.

Levin, Wen 2004
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Given

Asking whether there is a state stabilized by G is NP-
complete.

Pirsa: 14040136 Page 15/39



Assume all 95 has the
fO rm 1.; AST[‘- AST[ AST‘” .

Then there is a state
stabilized by all 9;

there is a computational
basis ) stabilized by all 9;.
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Assume all 95 has the gilrrrx,) = |lvpe,)

3 Q e ) . .
form 7.5k.51.5). is equivalent to require only

Then there is a state one of &y, 2, Ty equal to 1.
stabilized by all 9, This is the

. It is NP-complete.

there is a computational
basis x) stabilized by all 9;.
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Note that the hardness come from diagenal-operators-that

~rnontain
W1 TALANN g ' .
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Note that the hardness come from diagenat-operaters-tha

contain Q

Define: Regular XS-stabilizer group G if the diagonal
subgroup of G can be generated by Z-type operators.
Theorem: For a regular G, we can find the stabilizer
state(s) efficiently. (In fact, almost all properties of the
state can be computed efficiently)
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GI=X®S"5°5XX,
B=5S"RXRS°XRSR®X,
g3 =5"05"XXX®S.

The diagonal subgroup of G = (g1, g2, g3) is generated by
IRLZRXRZLRLRXTR 1
ZRIRZRIRZLZRI1
ZRLIRX]IRIRIR Z
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Many examples are regular XS-stabilizer, (e.g. the six
qubit example and double semion)

For non-regular G, we show that the code (ground) space
have a basis

“‘f’”l > with regular group G,
Ha
"i;‘i’!.'> with regular group G,

So the properties of reqular XS-stabilizer state also
applies to the basis.
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nain tool
= the efficiency mainly comes from the

Ol operators

No longer true in XS-stabilizer
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Consider the 2-qubit example > (—1)"1"2|x 22)
X Q7L
ZRX

ZX |01) XZ
00) ~111)
xz 110)zx

(formally on the blackboard)
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We can compute an XS-stabilizer state in the same way.
One difference:

Zlry @ wy) = (—1)71F ey
Ty D xg) = ¢F1TT2(=1)"102 |y P

LS‘
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We can compute an XS-stabilizer state in the same way.
One difference:

Zlry @ xo) = (=1)"17%2| 2 @ x9)

€1 [l} '1.2> - ‘!'..r| +xo (ﬁ l ),r|.r--_J T w \ '1.2>

LS‘
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We can compute an XS-stabilizer state in the same way.

One difference:
Zlry @ xo) = (=1)"17%2| 2 @ x9)
X 'f]'i.‘I"_g) - ‘i.g-|+.1-g(wl),r|.z-3 T ‘-.Jj’o'l-'2>

LS‘

Pauli: ZJ'E\' -,ff(-f')(q,])fi(-f')",->

[(x
XS ZIE‘ \/;( ){q(')(_m l)((.")‘1>

(e.g.c(x) = xyxows + xowgxs + ... )
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We can compute an XS-stabilizer state in the same way.

One difference;

Z X fl”;172> — (__l).r|+.1'3 X1 'f[} .'1-'2>
r1 P .172> — ‘j""+""-’(ﬁ-l)""""-’ xr1 D ,172>

LS‘

pauli: 37, oy i) (—1)2() |)

[(x
XS: Z,;-e\' \ﬂ( )5r’("')(*l)"("');1'>

(e.g.c(x) = xyxows + xowgxs + ... )
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Stabilizers

state » .y f(2)|x)

V fx)

Quantum circuit Local
for the state observables

Logical operator
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Given a regular XS-stabilizer state |¢’) and any bipartition
(A,B), we can efficiently find Uy @ Up, such that Uy @ Ug|y)
Is a Pauli stabilizer state .

This has the following consequences:
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—au _ 'P;; — <(y_4)(_ S>r§-m
In general finding the stabilized state(s) is NP-complete

| . the diagonal subgroup of G don'’t contain S. This
can be checked efficiently given G' = (g;).
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Up to a local basis change,
the double semion ground
state is

Z,,-g\'(" l)'/l('r}"""}
f(x)is the number of loops )
has. And now we know it is a
cubic polynomial ¢(x).

(a) Q
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Consider V to be the
subspace of closed loops on
3 layers.

Z.;-g\-(*l)"'("‘)l"'>
There are “interesting” f ()
that have local Hamiltonian.

Tool: group cohomology

Y. Hu, etc. 2012
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On the Z,xZ,xZ,, there are twisted double models that
have degeneracy 22 on a torus, while others have 64 (for
example, 3 independent toric code).

Those models support non-abelian anyons.
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The double semion model: projecting each stabilizer into
the gauge invariant subspace

4 qubit example: with diagonal subgroup:
XXS8S 11727
SSXX 42711

The subspace stabilized by diagonal subgroup is
00), [01), |10}, [11), with |0) = |00), etc.
In the subspace, the stabilizers become (effectively)
XZ
ZX
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