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Abstract: <span>Quantum computers have the potential to solve certain problems dramatically faster than classical computers. One of the main
guantum algorithmic tools is the notion of quantum walk, a quantum mechanical analog of random walk. | will describe quantum algorithms based
on this idea, including an optimal agorithm for evaluating Boolean formulas and one of the best known algorithms for simulating quantum
dynamics. | will also show how quantum walk can be viewed as a universal model of quantum computation.</span>
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Why quantum computing?
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Fast algorithms for classically hard problems
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* Computing discrete logarithms

* Decomposing Abelian groups

* Computations in number fields

* Approximating Gauss sums

* Shifted Legendre symbol

* Counting points on algebraic curves

* Approximating the Jones polynomial (and
other topological invariants)

* Simulating quantum systems

* Linear systems

* Computing effective resistance

Formula evaluation
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Collision finding (k-distinctness, k-sum, etc.)
Minimum spanning tree, connectivity,
shortest paths, bipartiteness of graphs
Network flows, maximal matchings

Finding subgraphs

Minor-closed graph properties
Property testing (distance between
distributions, bipartiteness/expansion of

graphs, etc.)

Checking matrix multiplication
Group commutativity

Subset sum
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What can be computed efficiently!?

Nature is described by quantum mechanics, so to fully understand
what can be computed in the real world, we have to understand the
implications of quantum mechanics for computation.

Apparently nature can efficiently solve problems that a classical
computer cannot.

Only two alternatives:

* Classical computers can efficiently simulate quantum ones, or

e Quantum mechanics is not a good description of nature

Main goal of my research: Understand the advantages of quantum
over classical computation
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The origin of quantum speedup

Interference between computational paths

Arrange so that
* paths to the solution interfere constructively
e paths to non-solutions interfere destructively

Quantum mechanics gives an efficient representation of complex
interference phenomena
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Quantum walk
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Quantum walk

Quantum analog of a random walk on a graph.

Replace probabilities by quantum amplitudes.
Interference can produce radically different behavior!

classical
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[Childs, Cleve, Deotto, Farhi, Gutmann, Spielman, STOC 2003]
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From random walk to quantum walk

| 2
O 1 1 0 0 2 I 0 0

5 10 0 1 1 1 3 0 I |

Graph G- A L0 0 10 L 1 0 2 10
: 01 1 01 0 1l -1 3 1

3 4 o

0O 1 0 1 0 () I 0

Random walk on G

State: Probability p.(t) of being at vertex v at time ¢

Dynamics: ip’ = Lp
dt

Quantum walk on G

State: Amplitude a.(t) to be at vertex v at time ¢

Dynamics: 158 = La
dt
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Outline

Formula evaluation Quantum simulation

1
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Universal computation
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Formula evaluation

* Ambainis, Childs, Reichardt, Spalek, and Zhang, FOCS 2007, pp. 363-372;
SIAM Journal on Computing 39,2513-2530 (2010)
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Query complexity of formula evaluation

Query model: given a black box for a string x € {0,1}"

Compute some function of x using as few queries as possible

and and and
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A single OR gate

or

o o o o

Classical complexity: O(n)
Quantum algorithm [Grover 1996]: O(\/n)
Quantum lower bound [BBBV 1996]: Q2(\/n)
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Balanced binary AND-OR trees

and

or

and and and
or or or or or or or or
0.753 )

Classical complexity [Snir 85; Saks, Wigderson 86; Santha 95]: O(n

Quantum lower bound [Barnum, Saks 02]: Q(y/n)
(holds for arbitrary AND-OR formulas)
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Formula evaluation by scattering

ﬂ/t [Farhi, Goldstone, Gutmann 07]

o —= & ® ® ® ® ® ® @ ® & ® ® @ -

o 1 o0 o0 1 1 1 o0 1 O 1 1T 0 0 0 0

Claim: For small k, the wave is transmitted if the formula (translated
into NAND gates) evaluates to (), and reflected if it evaluates to 1.
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General formulas

This simple strategy does not work for general formulas.

To get a general algorithm:

* Rewrite the formula to be
“approximately balanced”

» Assign weights to the edges
of the tree

* Show that eigenvectors are

related to the function value

e a
Lemma: If the formula evaluates to 0, then the tree has an
eigenstate with eigenvalue 0 that has constant overlap on the
root. If the formula evaluates to 1, then all eigenstates with

eigenvalue O(1/+/n) have no overlap on the root.
. J

s, = # of inputs in
subformula under v

The quantum query complexity of evaluating any AND-OR formula is
O(nz 2t ) (subsequently improved to O(y/n) [Reichardt 10])
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Quantum simulation

¢ Childs, Communications in Mathematical Physics 294, 581-603 (2010)
* Berry and Childs, Quantum Information and Computation 12,29-62 (2012)

Pirsa: 14040135 Page 18/34



Pirsa: 14040135

“...nature isn’t classical, dammit, and if you
want to make a simulation of nature, you'd
better make it quantum mechanical, and by
golly it’s a wonderful problem, because it
doesn’t look so easy.”

Richard Feynman
Simulating physics with computers (1981)
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Quantum dynamics

The dynamics of a quantum system are determined by its Hamiltonian.

d

’ial/)(t) = H (1)

Quantum simulation problem: Given a description of the
Hamiltonian H, an evolution time ¢, and an initial state 1/(0), produce
the final state v(t) (to within some error tolerance)

A classical computer cannot even represent the state efficiently

By performing measurements on the final state, a quantum computer

can efficiently answer questions that (apparently) a classical computer
cannot
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Sparse Hamiltonians

At most d nonzero entries per row (here d = 4)

i

.
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Sparse Hamiltonians

At most d nonzero entries per row (here d = 4)

et rrrrrr et r e P r et rr

"

Assumption: we can efficiently compute locations and values of
nonzero entries in any given row
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Simulation via product formulas

Original approach to sparse Hamiltonian simulation:

* Decompose H = Z} H; where each Hjis 1-sparse
(distributed edge coloring)

e Recombine terms

(PrOduct formUIas, e.g., ({—‘i(/’l—FI)’)!. ~ (({—f,/\L/'r-({—i“!,/';-)'i')

Running time of the best approach of this kind:

e Superlinear in evolution time ¢
e Cubic in sparsity d

[AT 03, CCDFGS 03, BACS 07, CK 10]
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Discrete-time quantum walk

Can we define a quantum walk that takes discrete steps?
In general, locality and unitarity are incompatible

Workaround: define a walk on the directed edges (a “coined walk”)

(

Szegedy 05: For a stochastic transition matrix P, Py

* Reflect about span{,: v € V'}

VP, ifv=w
where (1) (w.u) = {

0 otherwise
* Swap the edge direction

(.

\
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Hamiltonian simulation by quantum walk

|. Define an analog of Szegedy’s walk for any Hamiltonian H
(in place of the stochastic matrix P)

2. Show how to perform steps of this walk using queries to the
sparse Hamiltonian

3. Relate the spectrum of the walk to the spectrum of H

4. Infer information about the spectrum of the walk (and hence of H)
using quantum phase estimation

5. Introduce the appropriate phase e %t for each eigenstate of H with
eigenvalue ¢

[ Theorem: This running time of this approach is O(dt). ]

This algorithm is optimal with respect to either d or ¢ alone
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Universal computation

e Childs, Physical Review Letters 102, 180501 (2009)
* Childs, Gosset, and Webb, Science 339, 791-794 (2013)
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Scattering on graphs

Attach semi-infinite paths to two vertices of an arbitrary finite graph.

Before:

After:
— k k —
R(A )—. L L & & @ @ Tgk) @ *—

More generally, attach any number of semi-infinite paths. The
scattering behavior is described a unitary matrix called the S-matrix.

Page 27/34



Implementing a gate

To perform a gate, design a graph whose S-matrix implements the
desired transformation U at the momentum used for the encoding.

o= (2 1)
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Universal set of single-qubit gates

Oip o—o—=— (

out
Oln o 0 Oout

1in 1out

momentum for logical states: k = 7/4
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Universality construction

With an appropriate encoding of n-qubit states, two-qubit gates are

trivial.

Implement sequences of gates by concatenation.

Result: Any n-qubit circuit can be simulated by some graph.
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Quantum walks with many walkers

Consider a quantum walk with many walkers that interact locally

With m walkers on an n-vertex graph, there are n' states

Theorem: Any n-qubit, g-gate quantum circuit can be simulated by
a quantum walk with n + 1 walkers interacting for time poly(n, g)
on an unweighted planar graph with poly(n, g) vertices.

Consequences:

e Quantum walks with many interacting walkers (on small graphs) are
also computationally powerful

* New architecture for a quantum computer (with no time-dependent
control)

* Simulating the dynamics of interacting many-body systems is BQP-
hard (e.g., the “Bose-Hubbard model” on a sparse, unweighted, planar

graph)
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Universal computation with many walkers

Main new idea: a gadget that implements a two-qubit interaction via
momentum-dependent routing
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(+ extensive analysis to show the strategy works on a finite graph
with small error)
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Summary

Quantum walk is a powerful algorithmic tool.

Formula evaluation Quantum simulation

’Id—fi/f( ) = H(t)

Universal computation
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Outlook

When will we have large-scale quantum computers?

“Prediction is very difficult, especially about the future.” —Niels Bohr

We can (and should!) address many crucial questions now:

* How can we design cryptosystems that resist quantum attacks?

* How efficiently can quantum computers simulate quantum systems?
* What other problems have fast quantum algorithms?

* What other tools are useful for building quantum algorithms?

* What problems are hard even for quantum computers!?
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