Title: Playing with a Bouncing Universe

Date: Apr 04, 2014 05:40 PM

URL: http://pirsa.org/14040128

Abstract:

Pirsa: 14040128 Page 1/45

Playing with a Bouncing Universe

Neil Turok

Perimeter Institute

Based on work with Itzhak Bars, Paul Steinhardt New work with Latham Boyle, Kieran Finn Steffen Gielen

Pirsa: 14040128 Page 2/45

Wow!

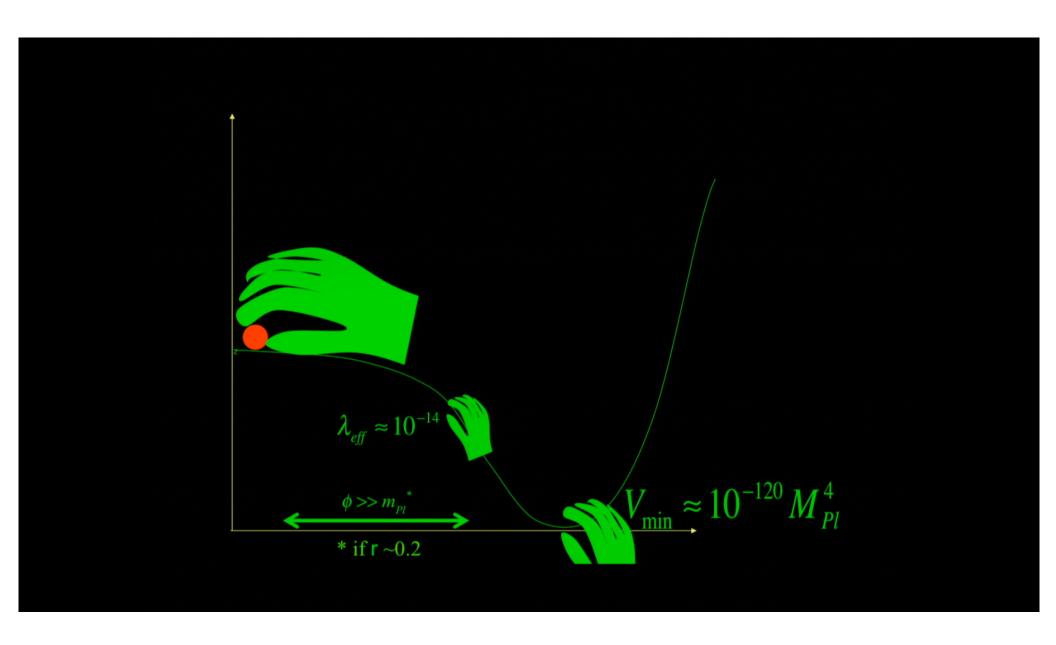
Inflation has turned out to be an amazing phenomenological model: e.g

Inflation versus Cyclic Predictions for Spectral Tilt

Sep 2003

Justin Khoury¹, Paul J. Steinhardt² and Neil Turok³

$$(n_s-1)_{inf} \approx -\frac{3}{\mathcal{N}} \quad T/S \approx 13.8\bar{\epsilon} \approx \frac{13.8}{\mathcal{N}} \approx 23\%$$


If BICEP2 is confirmed, I'll be delighted to pay up: pair of roller-blades for Eva and \$200 (CDN) to Stephen H

Pirsa: 14040128 Page 3/45

But let's not forget...

It still has some pretty big problems

Pirsa: 14040128 Page 4/45

Pirsa: 14040128 Page 5/45

With all of inflation's successes, we should still ask:

might there be a simpler and more predictive explanation?

a bouncing universe is a natural possibility to explore

Pirsa: 14040128 Page 6/45

Pirsa: 14040128 Page 7/45

Pirsa: 14040128 Page 8/45

A cyclic scenario is attractive because it might provide a dynamical solution to various tuning problems including the mass hierarchies (though I won't discuss this here).

Let's pursue a minimalist approach

Pirsa: 14040128 Page 9/45

Curiosity 1: flat FRW radiation dominated universe

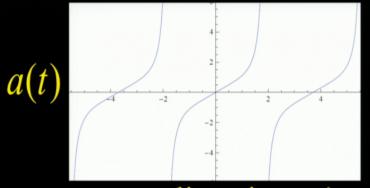
$$ds^{2} = t^{2}(-dt^{2} + d\vec{x}^{2}), -\infty < t < \infty$$

- an analytic bounce!

Perturbations: $\delta_r \sim e^{\pm ikt/\sqrt{3}}, \quad h_{ij} \sim \frac{e^{\pm ikt}}{t}$

- single-valued in the complex t – plane around t = 0 (in a suitable gauge)

Interesting to explore at higher order

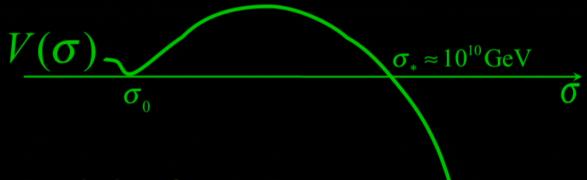

w/ S. Gielen

Pirsa: 14040128 Page 10/45

Curiosity 2: include Λ

$$ds^2 = a(t)^2(-dt^2 + d\vec{x}^2); \quad a'^2 = \frac{8\pi G}{3}(\rho_r + \rho_\Lambda a^4)$$

$$\Rightarrow a = -e^{i\pi/4} (\rho_r / \rho_\Lambda)^{1/4} sn(e^{3i\pi/4} (\rho_r \rho_\Lambda)^{1/4} t, -1)$$

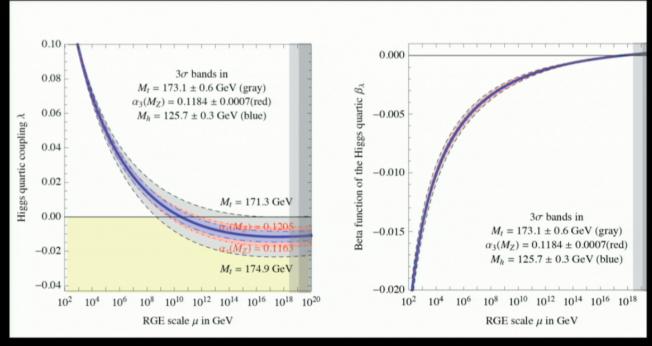

- a cyclic universe!

Only singularities are poles, unique analytic continuation to complex t-plane, doubly periodic (elliptic) function

Pirsa: 14040128

Now, lets try to a bit more realistic

Assuming no new physics, we can extrapolate MSM to near-Planckian Higgs vevs:



Conclusions from LHC:

- 1) SM vac "on the edge" of stability
- 2) As $\varphi \to m_{Pl}$, evidence for scale invariance

Pirsa: 14040128 Page 12/45

$$V = \lambda(\sigma)\sigma^4$$

Buttazzo et al 1307.3536

Pirsa: 14040128 Page 13/45

The Standard Model:

$$\int \left[m_{Pl}^2 R + \left| D\sigma \right|^2 - V(\sigma, m_H, \Lambda) - F^2 + \overline{\psi} i D\psi - y \overline{\psi} \psi \sigma - Y v_R C v_R M \right]$$

Content:

Gravity, Higgs Gauge $SU_3xSU_2xU_1$ Fermions

	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$U(1)_{B-L}$
q_L	3	2	+1/6	+1/3
u_R	3	1	+2/3	+1/3
d_R	3	1	-1/3	+1/3
l_L	1	2	-1/2	-1
ν_R	1	1	0	-1
e_R	1	1	-1	-1
h	1	2	+1/2	0
9	1	1	0	+2

Pirsa: 14040128 Page 14/45

A tight and consistent structure:

- chiral anomaly cancellation
- gauging one U1 requires one "miracle"
- gauging two (Y, B-L) requires two "miracles" and rh neutrinos

- just 4 dimensionful numbers — potentially, all are a result of spontaneously broken scale symmetry

Pirsa: 14040128 Page 15/45

A tight and consistent structure:

- chiral anomaly cancellation
- gauging one U1 requires one "miracle"
- gauging two (Y, B-L) requires two "miracles" and rh neutrinos

- just 4 dimensionful numbers — potentially, all are a result of spontaneously broken scale symmetry

Pirsa: 14040128 Page 16/45

"Lift" SM to conformal (Weyl) symmetry)

$$\int \left[m_{Pl}^{2} R + \left| Dh \right|^{2} + V(h, m_{H}, \Lambda) \right]$$

$$\Rightarrow \int \left[\frac{1}{6} \left(\varphi^{2} - \left| h \right|^{2} \right) R - \left| D\varphi \right|^{2} + \left| Dh \right|^{2} + V_{4}(h, \varphi) \right]$$

 $oldsymbol{arphi}$: looks like ghost but can be locally gauged away

$$\operatorname{vev}\left\langle \varphi\right\rangle \to m_{Pl}, M, m_{H}, m_{\Lambda}$$

Nevertheless, nontrivial dynamics of φ can generate RH neutrinos -> baryogenesis, dark matter

Pirsa: 14040128 Page 17/45

"Lift" SM to conformal (Weyl) symmetry)

$$\int \left[m_{Pl}^{2} R + \left| Dh \right|^{2} + V(h, m_{H}, \Lambda) \right]$$

$$\Rightarrow \int \left[\frac{1}{6} \left(\varphi^{2} - \left| h \right|^{2} \right) R - \left| D\varphi \right|^{2} + \left| Dh \right|^{2} + V_{4}(h, \varphi) \right]$$

 $oldsymbol{arphi}$: looks like ghost but can be locally gauged away

$$\operatorname{vev}\left\langle \varphi\right\rangle \to m_{Pl}, M, m_{H}, m_{\Lambda}$$

Nevertheless, nontrivial dynamics of φ can generate RH neutrinos -> baryogenesis, dark matter

Pirsa: 14040128 Page 18/45

Study FRW dynamics in various Weyl gauges

Let $\varphi_{\pm} \equiv \varphi \pm h$ $\varphi_{+} = 1 \qquad "M theory" gauge$ $\varphi_{+} = 1/\varphi_{-} \quad "Einstein" gauge$ $\varphi_{+} = 1/\varphi_{-}^{2} \quad "string" gauge$ For resolving FRW-type singularities, det $g_{uv} = -1$ - unimodular gauge

Pirsa: 14040128 Page 19/45

"Lift" SM to conformal (Weyl) symmetry)

$$\int \left[m_{Pl}^{2} R + \left| Dh \right|^{2} + V(h, m_{H}, \Lambda) \right]$$

$$\Rightarrow \int \left[\frac{1}{6} \left(\varphi^{2} - \left| h \right|^{2} \right) R - \left| D\varphi \right|^{2} + \left| Dh \right|^{2} + V_{4}(h, \varphi) \right]$$

 $oldsymbol{arphi}$: looks like ghost but can be locally gauged away

$$\operatorname{vev}\left\langle \varphi\right\rangle \to m_{Pl}, M, m_{H}, m_{\Lambda}$$

Nevertheless, nontrivial dynamics of φ can generate RH neutrinos -> baryogenesis, dark matter

Pirsa: 14040128 Page 20/45

Study FRW dynamics in various Weyl gauges

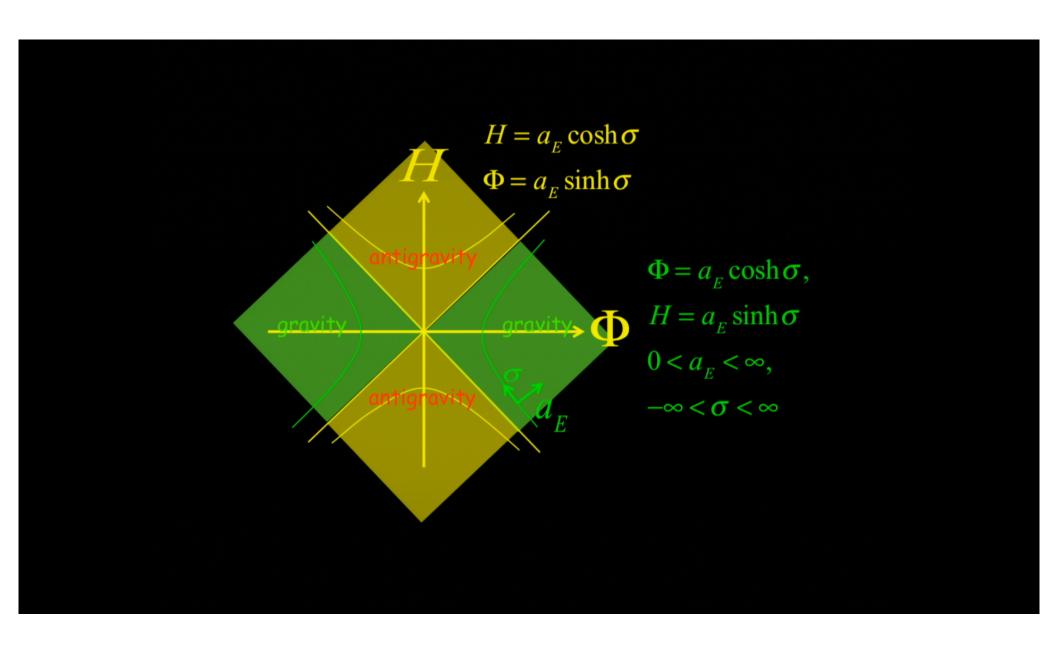
Let $\varphi_{\pm} \equiv \varphi \pm h$ $\varphi_{+} = 1 \qquad "M \ theory" gauge$ $\varphi_{+} = 1/\varphi_{-} \quad "Einstein" gauge$ $\varphi_{+} = 1/\varphi_{-}^{2} \quad "string" gauge$ For resolving FRW-type singularities, $\det g_{\mu\nu} = -1 \quad - \text{unimodular gauge}$

Pirsa: 14040128 Page 21/45

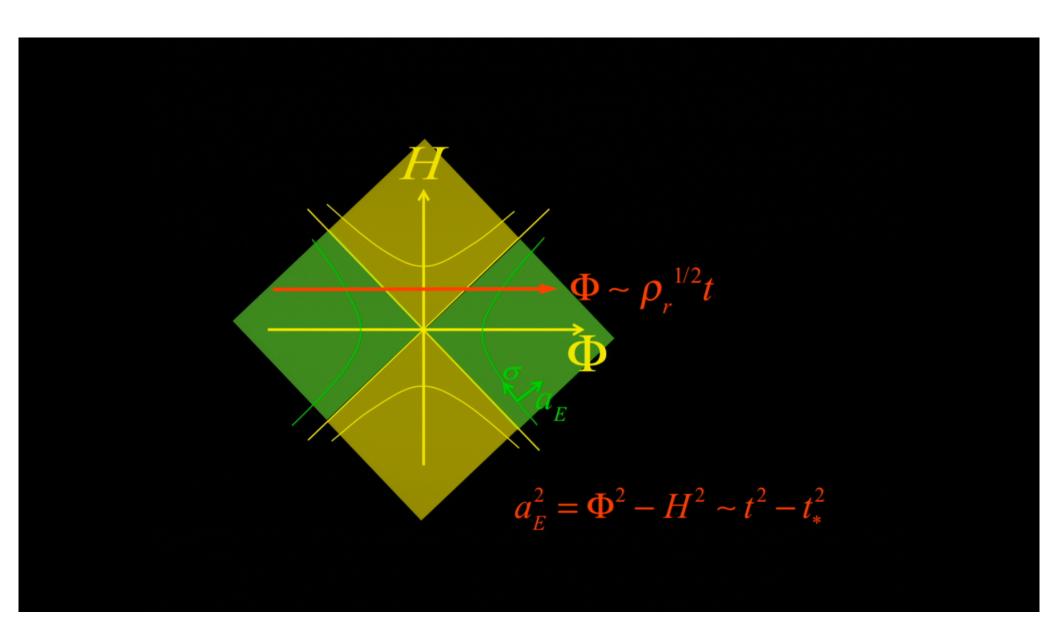
FRW cosmology

$$ds^2 = a(t)^2(-dt^2 + d\vec{x}^2)$$

Define Weyl-invariant $\Phi \equiv a\varphi$, H = ah


(i.e., φ and h in unimodular gauge)

Then $\Phi^2 - H^2 = a^2(\varphi^2 - h^2) = a_E^2$ in Einstein gauge


$$S = \int dt \left(-\Phi'^2 + H'^2 - (\Phi^2 - H^2)^2 V(H/\Phi) - \rho_r \right)$$

Kinetic-dominated dynamics is regular across $a_E = 0$

Pirsa: 14040128 Page 22/45

Pirsa: 14040128 Page 23/45

Pirsa: 14040128 Page 24/45

A deeper and more powerful perspective is obtained by analytically continuing the solution into the complex t-plane.

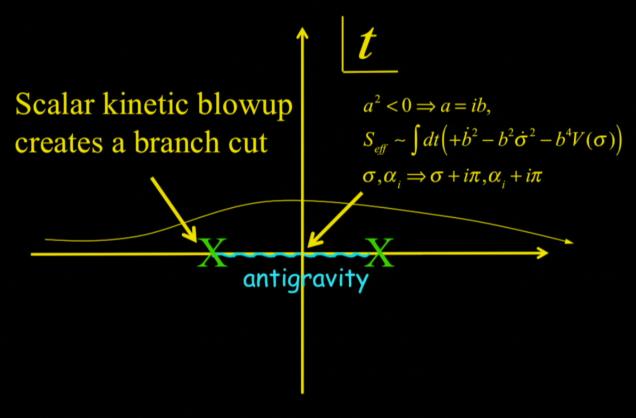
$$a^2(t) = t^2 - t_*^2$$

$$\sigma \sim m_{Pl} \ln(\frac{t-t_*}{t+t_*})$$

The solution is complex but *a priori* it seems a reasonable candidate saddle point in a semi-classical approximation to Feynman's path integral

Pirsa: 14040128 Page 25/45

A deeper and more powerful perspective is obtained by analytically continuing the solution into the complex t-plane.


$$a^2(t) = t^2 - t_*^2$$

$$\sigma \sim m_{Pl} \ln(\frac{t-t_*}{t+t_*})$$

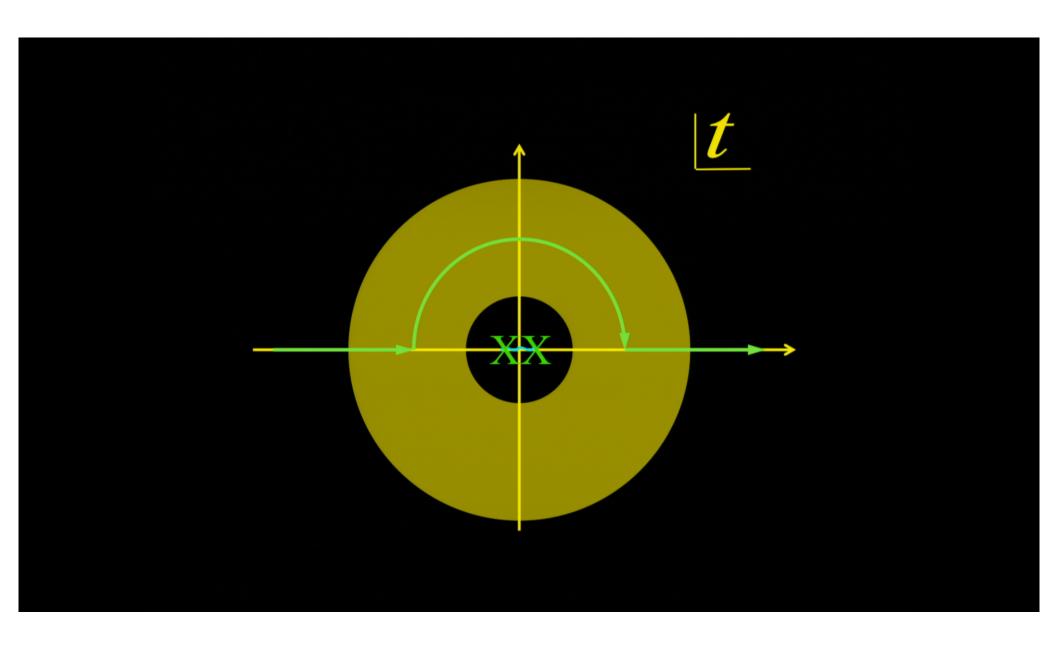
The solution is complex but *a priori* it seems a reasonable candidate saddle point in a semi-classical approximation to Feynman's path integral

Pirsa: 14040128 Page 26/45

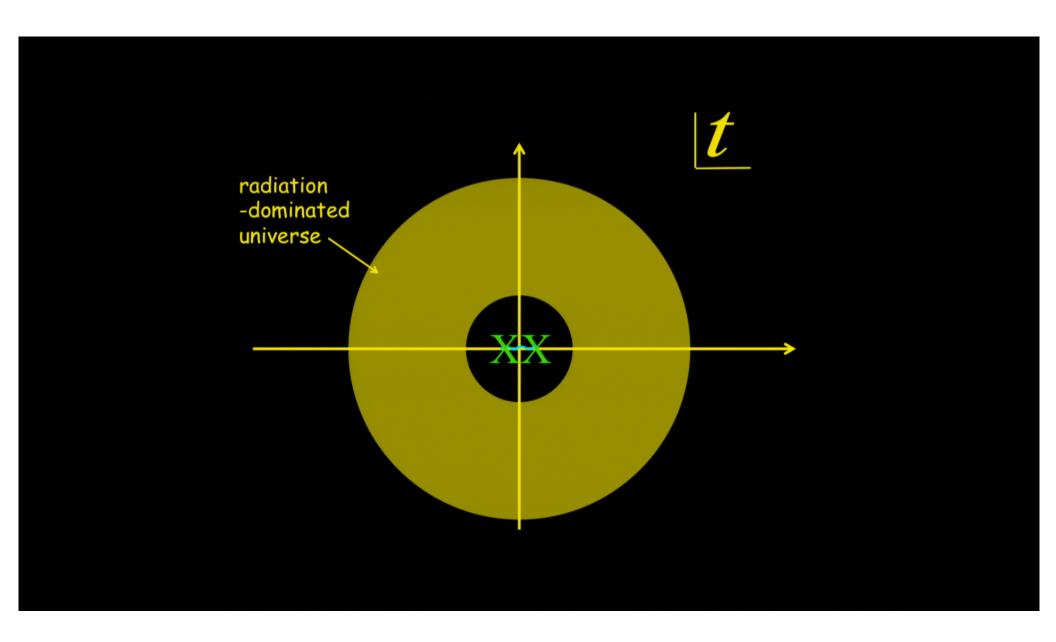
Analytic continuation to complex *t*-plane

Pirsa: 14040128 Page 27/45

Production of tensor modes in kinetic-dominated regime


$$a^{2} = t^{2} - t_{*}^{2}$$

$$\ddot{h}_{ij} + 2\frac{\dot{a}}{a}\dot{h}_{ij} + k^{2}h_{ij} = 0; h_{ij} = a^{-1}\chi_{ij}$$


$$\ddot{\chi}_{ij} + k^{2}\chi_{ij} = \frac{\ddot{a}}{a}\chi_{ij} = -\frac{t_{*}^{2}}{(t^{2} - t_{*}^{2})^{2}}\chi_{ij}$$

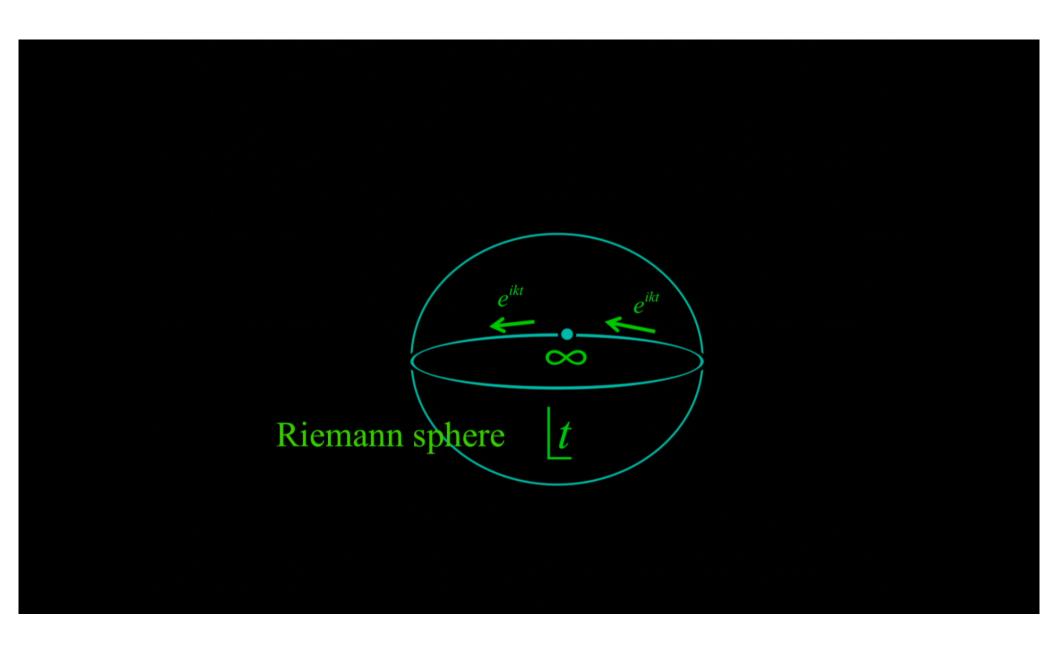
No analytic solution, but can see that graviton production vanishes by analytic continuation

Pirsa: 14040128 Page 28/45

Pirsa: 14040128 Page 29/45

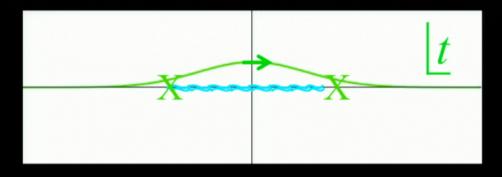
Pirsa: 14040128 Page 30/45

Production of tensor modes in kinetic-dominated regime

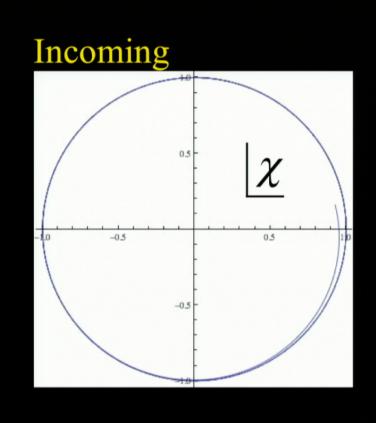

$$a^{2} = t^{2} - t_{*}^{2}$$

$$\ddot{h}_{ij} + 2\frac{\dot{a}}{a}\dot{h}_{ij} + k^{2}h_{ij} = 0; h_{ij} = a^{-1}\chi_{ij}$$

$$\ddot{\chi}_{ij} + k^{2}\chi_{ij} = \frac{\ddot{a}}{a}\chi_{ij} = -\frac{t_{*}^{2}}{(t^{2} - t_{*}^{2})^{2}}\chi_{ij}$$

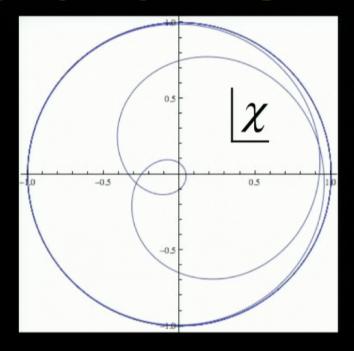

No analytic solution, but can see that graviton production vanishes by analytic continuation

Pirsa: 14040128 Page 31/45



Pirsa: 14040128 Page 32/45

Integrate along contour above singularities



Pirsa: 14040128 Page 33/45

Pirsa: 14040128 Page 34/45

Outgoing: no graviton production!

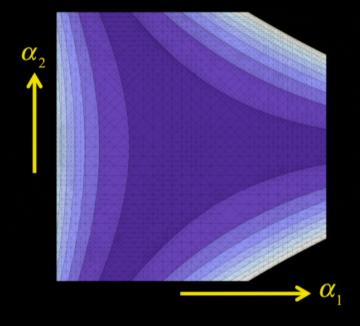
Pirsa: 14040128 Page 35/45

Now add anisotropy to the background

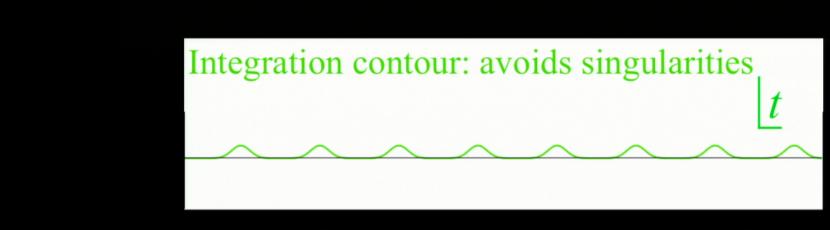
$$ds^{2} = -dt^{2} + a^{2}(t) ds_{3}^{2} = a^{2}(\tau) \left(-d\tau^{2} + ds_{3}^{2}\right),$$

anisotropic Bianchi IX metric with curvature K

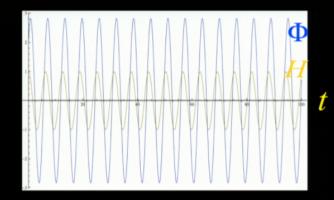
$$\left(ds_{3}^{2}\right)_{IX}=e^{-2\sqrt{2/3}\kappa\alpha_{1}}\left(d\sigma_{z}\right)^{2}+e^{\sqrt{2/3}\kappa\alpha_{1}}\left(e^{\sqrt{2}\kappa\alpha_{2}}\left(d\sigma_{x}\right)^{2}+e^{-\sqrt{2}\kappa\alpha_{2}}\left(d\sigma_{y}\right)^{2}\right),$$

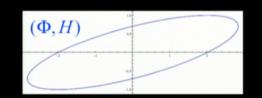

Einstein-frame effective action

$$S_{\text{eff}}^{E} = \int d\tau \left\{ \begin{array}{l} \frac{1}{e} \left[-\frac{6}{2\kappa^{2}} \dot{a}_{E}^{2} + \frac{1}{2} a_{E}^{2} \dot{\sigma}^{2} + \frac{1}{2} a_{E}^{2} \dot{\alpha}_{1}^{2} + \frac{1}{2} a_{E}^{2} \dot{\alpha}_{2}^{2} \right] \\ -e \left[a_{E}^{4} V \left(\sigma \right) + \rho_{0} - \frac{6K}{2\kappa^{2}} a_{E}^{2} v \left(\alpha_{1}, \alpha_{2} \right) \right] \end{array} \right\}.$$

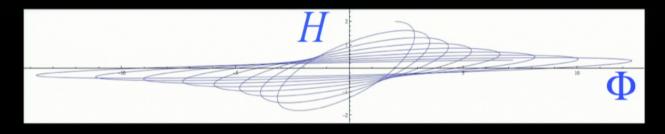

$$v\left(\alpha_{1},\alpha_{2}\right) = \frac{1}{3}\left(-e^{-4\sqrt{2/3}\kappa\alpha_{1}} - 4e^{2\sqrt{2/3}\kappa\alpha_{1}}\sinh^{2}\left(\sqrt{2}\kappa\alpha_{2}\right) + 4e^{-\sqrt{2/3}\kappa\alpha_{1}}\cosh\left(\sqrt{2}\kappa\alpha_{2}\right)\right)$$

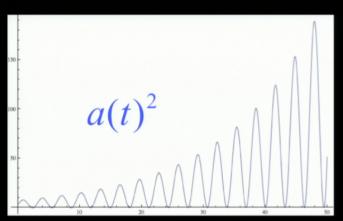
Pirsa: 14040128 Page 36/45

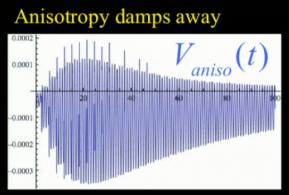




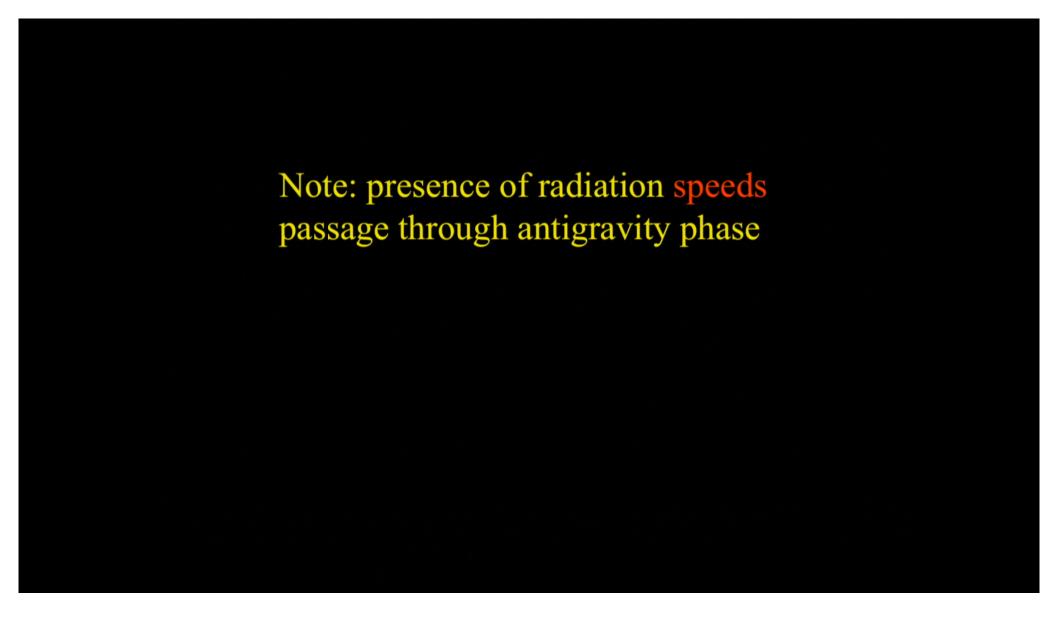
Pirsa: 14040128 Page 37/45


Evolution with small anisotropy $\alpha_1 \sim \alpha_2 \sim 10^{-3}$



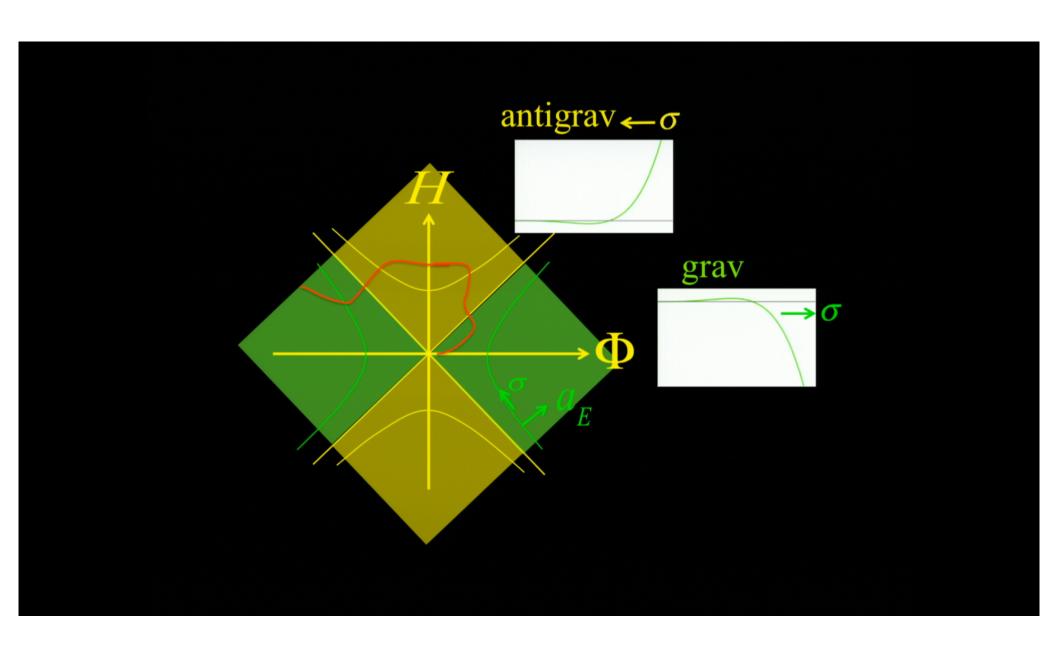


Pirsa: 14040128 Page 38/45


Solution with entropy production

Pirsa: 14040128 Page 39/45

Pirsa: 14040128 Page 40/45


Can we get something that looks like inflation in the "antigravity" region?

It seems the answer is yes! a negative Higgs potential behaves like positive potential in that region (since scalar KE reverses)

$$V_{eff}(\sigma) \sim -\lambda \sigma^4$$
, $\lambda \approx 10^{-14}$ is allowed by LHC,

I am just extrapolating this to σ beyond m_{Pl}

Pirsa: 14040128 Page 41/45

Pirsa: 14040128 Page 42/45

A (super)-economical version of leptogenesis becomes feasible

w/ L Boyle and K Finn

Recall: Majorana mass term becomes $\varphi v_R C v_R$

$$\left[\frac{i}{a}\left(\gamma^0\,\partial_t + \gamma^i\,\partial_i\right) + \frac{3}{2}\frac{a'}{a^2}\gamma^0 - m(t)\right]\Psi = 0$$

Define
$$\psi = a^{\frac{3}{2}}\Psi$$
, $\mu = am$

$$\Rightarrow \left(i\gamma^{\mu}\,\partial_{\mu} - \mu(t)\right)\psi = 0.$$

In the simplest bounce solution, $\mu = Y \rho^{\frac{1}{2}} t \equiv \alpha t$

Modes obey
$$\ddot{\chi}_k^{\pm} + (k^2 + \alpha^2 t^2 \mp i\alpha) \chi_k^{\pm} = 0$$

Pirsa: 14040128

Particle production across bounce

$$n_{k} = \left| \beta_{k} \right|^{2} = e^{-k^{2}/\alpha}$$

$$\Rightarrow n = \int \frac{d^{3}\vec{k}}{(2\pi)^{3}} \left| \beta_{k} \right|^{2} \sim \alpha^{3/2} \sim Y^{3/2} \rho_{r}^{3/4} \theta_{CP,v}^{2}$$

$$\Rightarrow \frac{n_{L}}{S} \sim Y^{3/2} \theta_{CP,v}^{2},$$

converted to $\frac{n_L}{s}$ via EW B+L anomaly

Pirsa: 14040128 Page 44/45

Conclusion

A simple approach to bounces (but there are virtues in that!)

Still need to include (or parameterize) entropy generation at bounce resulting from microphysics

Perhaps this can become a competitor to inflation

Pirsa: 14040128 Page 45/45