Title: One-loop renormalization in a toy model of Horava-Lifshitz gravity

Date: Apr 24, 2014 03:10 PM

URL: http://pirsa.org/14040105

Abstract: I will present some recent results on the UV properties of a toy model of Horava-Lifshitz gravity in 2+1 dimensions. In particular, I will illustrate some details of a one-loop calculation, leading to beta functions for the running couplings. The renormalization group flow obtained in such way shows that Newton's constant is asymptotically free. However, the DeWitt
supermetric approaches its Weyl invariant form with the same speed and the effective interaction coupling of the scalar degree of freedom remains constant along the flow. I will discuss some general lesson that we can learn from these results.

| Span | Properties of a toy model of Horava-Lifshitz gravity in 2+1 dimensions. In particular, I will discuss from the particular, I will discuss from the particular of a toy model of Horava-Lifshitz gravity in 2+1 dimensions. In particular, I will discuss from the particular of a toy model of Horava-Lifshitz gravity in 2+1 dimensions. In particular, I will discuss from the particular of a toy model of Horava-Lifshitz gravity in 2+1 dimensions. In particular, I will discuss from the particular of a toy model of Horava-Lifshitz gravity in 2+1 dimensions. In particular, I will discuss from the particular of a toy model of Horava-Lifshitz gravity in 2+1 dimensions. In particular, I will discuss from the particular of the particular of

Pirsa: 14040105 Page 1/22

One-loop renormalization in a toy model of Hořava-Lifshitz gravity

Dario Benedetti

Albert Einstein Institute, Golm, Germany

April 24, 2014

based on JHEP 1403 (2014) 078 [arXiv:1311.6253] (with Filippo Guarnieri)

Pirsa: 14040105 Page 2/22

Motivations

Reconciling quantum field theory with gravity (beyond EFT)

Hořava-Lifshitz gravity [Hořava '09]: privileged role of time

construct a geometric theory of space AND time ⇒ obtain a perturbatively renormalizable theory

2/19

Pirsa: 14040105 Page 3/22

Motivations

Reconciling quantum field theory with gravity (beyond EFT)

Hořava-Lifshitz gravity [Hořava '09]: privileged role of time

construct a geometric theory of space AND time ⇒ obtain a perturbatively renormalizable theory

2/19

Pirsa: 14040105 Page 4/22

Outline

- The toy model
- The one-loop calculation
- Oiscussion and prospects

3/19

Pirsa: 14040105 Page 6/22

Lifshitz scaling and renormalizability at the Lifshitz point

Anisotropic scale invariance at the Lifshitz point

$$S = \int dt \, d^d x \, \left(\dot{\phi}^2 + \left((\nabla^2)^{\frac{z}{2}} \phi \right)^2 \right)$$

$$x \to \alpha x$$
, $t \to \alpha^z t$

• It is useful to introduce anisotropic scaling dimensions:

$$[x] = -1, \quad [t] = -z$$

$$\Rightarrow \quad [\phi] = \frac{d-z}{2}$$

- ullet For z=d, $[\phi]=0$ and interactions are renormalizable for any d
- Effectively shift critical dimension

4/19

Lifshitz scaling and renormalizability at the Lifshitz point

Anisotropic scale invariance at the Lifshitz point

$$S = \int dt \, d^d x \, \left(\dot{\phi}^2 + \left((\nabla^2)^{\frac{z}{2}} \phi \right)^2 \right)$$

$$x \to \alpha x$$
, $t \to \alpha^z t$

• It is useful to introduce anisotropic scaling dimensions:

$$[x] = -1, \quad [t] = -z$$

$$\Rightarrow \quad [\phi] = \frac{d-z}{2}$$

- ullet For z=d, $[\phi]=0$ and interactions are renormalizable for any d
- Effectively shift critical dimension

4/19

Lifshitz scaling and renormalizability at the Lifshitz point

Anisotropic scale invariance at the Lifshitz point

$$S = \int dt \, d^d x \, \left(\dot{\phi}^2 + \left((\nabla^2)^{\frac{z}{2}} \phi \right)^2 \right)$$

$$x \to \alpha x$$
, $t \to \alpha^z t$

• It is useful to introduce anisotropic scaling dimensions:

$$[x] = -1, \quad [t] = -z$$

$$\Rightarrow \quad [\phi] = \frac{d-z}{2}$$

- ullet For z=d, $[\phi]=0$ and interactions are renormalizable for any d
- Effectively shift critical dimension

4/19

Introducing a foliation for gravity

- Before applying this idea to gravity, we need to introduce a foliation
- \bullet (d+1)-dimensional manifold with topology $\mathcal{M}=\mathbb{R}\times\Sigma$, with given foliation \mathcal{F}
- ADM decomposition of (Euclidean) spacetime metric:

$$ds^{2} = N^{2}dt^{2} + g_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt)$$

• Foliation-preserving diffeomorphisms $Diff_{\mathcal{F}}(\mathcal{M})$:

$$x^{i} \rightarrow x^{i} + \zeta^{i}(\vec{x}, t)$$

 $t \rightarrow t + \zeta(t)$

• Construct a theory of geometrodynamics invariant under $Diff_{\mathcal{F}}(\mathcal{M})$

5/19

Pirsa: 14040105 Page 10/22

The general model

Kinetic term

$$S_K = \frac{1}{16\pi G} \int dt \, d^d x N \sqrt{g} \, K_{ij} \, \mathcal{G}^{ijkl} \, K_{kl}$$

where

$$K_{ij} = \frac{1}{2N} (\partial_t g_{ij} - \nabla_i N_j - \nabla_j N_i)$$

is the extrinsic curvature, and

$$\mathcal{G}^{ijkl} = \frac{1}{2} \left(g^{ik} g^{jl} + g^{il} g^{jk} \right) - \lambda g^{ij} g^{kl}$$

is the DeWitt supermetric

 $\lambda=1$: GR value

 $\lambda = \frac{1}{d}$: (anisotropic) Weyl invariant value $(g_{ij} \to e^{2\Omega(x)}g_{ij}, N \to e^{d\Omega(x)}N)$

6/19

Pirsa: 14040105 Page 11/22

The general model

Kinetic term

$$S_K = \frac{1}{16\pi G} \int dt \, d^d x N \sqrt{g} \, K_{ij} \, \mathcal{G}^{ijkl} \, K_{kl}$$

Potential term:

In the projectable version (N = N(t)) this takes the form of a higher derivative theory of gravity in d dimensions:

$$S_V = \frac{1}{16\pi G} \int dt \, d^d x N \sqrt{g} \, V[g_{ij}]$$

where $V[g_{ij}]$ contains spatial curvature invariants with up to 2z derivatives

e.g.
$$C_{ijkl}C^{ijkl}$$
, $R^{ij}\nabla^2 R_{ij}$, R^3 , ...

In the non-projectable version, invariants include also the acceleration vector

$$a_i \equiv \frac{\nabla_i N}{N}$$

6/19

Lower dimension

- Lower dimensional theories are widely used as toy models
 (e.g. 3d gravity, even if it has no degrees of freedom [e.g. Carlip's book])
- Lower dimensional HL gravity:
 - [Hořava '08] (2+1)d HLG with detailed balance as quantum theory of membranes
 - [DB, Henson '09] (2+1)d HLG without detailed balance and CDT (spectral dimension)
 - [Sotiriou, Visser, Weinfurtner '11] (1+1)d and (2+1)d HLG as playgrounds for classical dynamics
 - [Anderson, Carlip, Cooperman, Hořava, Kommu, Zulkowski '11] (2+1)d HLG and extended CDT (phase diagram)
 - [Ambjorn, Glaser, Sato, Watabiki. '13] (1+1)d HLG and CDT (quantum Hamiltonian)

Pirsa: 14040105

7/19

(2+1)-dimensional model

- Simplifications in d=2:
 - \bullet no Weyl tensor, and $R_{ij}=\frac{1}{2}g_{ij}R$
 - ullet z=2 is sufficient for renormalizability
- Nontrivial: one scalar degree of freedom! (because of reduced symmetry)

8/19

Pirsa: 14040105 Page 14/22

(2+1)-dimensional model

- Simplifications in d=2:
 - no Weyl tensor, and $R_{ij} = \frac{1}{2}g_{ij}R$
 - \bullet z=2 is sufficient for renormalizability
- Nontrivial: one scalar degree of freedom! (because of reduced symmetry)
- Projectable model:

$$S = \frac{2}{\kappa^2} \int dt \, d^2x N \sqrt{g} \left\{ \lambda K^2 - K_{ij} K^{ij} - 2\Lambda + cR + \gamma R^2 \right\}$$

Note:
$$[t] = -2 \implies [\kappa] = [\lambda] = [\gamma] = 0$$
, $[\Lambda] = 4$, $[c] = 2$

• Non-projectable: 7 more couplings + other complications

8/19

(2+1)-dimensional model

- Simplifications in d=2:
 - no Weyl tensor, and $R_{ij} = \frac{1}{2}g_{ij}R$
 - \bullet z=2 is sufficient for renormalizability
- Nontrivial: one scalar degree of freedom! (because of reduced symmetry)
- Projectable model:

$$S = \frac{2}{\kappa^2} \int dt \, d^2x N \sqrt{g} \left\{ \lambda K^2 - K_{ij} K^{ij} - 2\Lambda + cR + \gamma R^2 \right\}$$

Note:
$$[t] = -2 \implies [\kappa] = [\lambda] = [\gamma] = 0$$
, $[\Lambda] = 4$, $[c] = 2$

• Non-projectable: 7 more couplings + other complications

8/19

Gauge fixing

Fluctuation fields transform as

$$h_{ij} \rightarrow h_{ij} + D_i \zeta_j + D_j \zeta_i + \zeta \dot{g}_{ij}$$

$$n_i \rightarrow n_i + g_{ij} \dot{\zeta}^j$$

$$n \rightarrow n + \dot{\zeta}$$

- We can choose a proper-time gauge: $n = n_i = 0$ (only in projectable case!)
- Fadeev-Popov determinant: $\sqrt{\det(-\partial_t^2)}$ \Rightarrow No log divergences, only renormalization of cosmological term

10/19

Pirsa: 14040105 Page 17/22

Gauge fixing

Fluctuation fields transform as

$$h_{ij} \rightarrow h_{ij} + D_i \zeta_j + D_j \zeta_i + \zeta \dot{g}_{ij}$$

$$n_i \rightarrow n_i + g_{ij} \dot{\zeta}^j$$

$$n \rightarrow n + \dot{\zeta}$$

- We can choose a proper-time gauge: $n = n_i = 0$ (only in projectable case!)
- Fadeev-Popov determinant: $\sqrt{\det(-\partial_t^2)}$ \Rightarrow No log divergences, only renormalization of cosmological term
- ullet Residual symmetry: $\zeta^i=\zeta^i(x)$, time-independent
- ullet Canonical analysis: gauge-fix residual symmetry on one slice \Rightarrow constraints preserve gauge fixing on all subsequent slices \Rightarrow longitudinal modes of \hat{h}_{ij} are not propagating

Here: no path integral over longitudinal modes

10/19

Gauge fixing

Fluctuation fields transform as

$$h_{ij} \rightarrow h_{ij} + D_i \zeta_j + D_j \zeta_i + \zeta \dot{g}_{ij}$$

$$n_i \rightarrow n_i + g_{ij} \dot{\zeta}^j$$

$$n \rightarrow n + \dot{\zeta}$$

- We can choose a proper-time gauge: $n = n_i = 0$ (only in projectable case!)
- Fadeev-Popov determinant: $\sqrt{\det(-\partial_t^2)}$ \Rightarrow No log divergences, only renormalization of cosmological term
- ullet Residual symmetry: $\zeta^i=\zeta^i(x)$, time-independent
- Canonical analysis: gauge-fix residual symmetry on one slice \Rightarrow constraints preserve gauge fixing on all subsequent slices \Rightarrow longitudinal modes of \hat{h}_{ij} are not propagating

Here: no path integral over longitudinal modes

10/19

One loop effective action

• The one-loop effective action can be written as

$$\Gamma = S_{tot} + \hbar S^{1-loop} + \mathcal{O}(\hbar^2)$$

where

$$S^{1-loop} = \frac{1}{2} \operatorname{STr} \ln(S_{tot}^{(2)})$$

and

$$S_{tot} = S + S_{gf} + S_{gh}$$

The functional trace contains divergences ⇒ renormalization

11/19

Effective coupling

Expand the action

$$S[g_{ij} + \epsilon h_{ij}] = S[g_{ij}] + \epsilon \delta S[g_{ij}; h_{ij}] + \epsilon^2 \delta^2 S[g_{ij}; h_{ij}] + \mathcal{O}(\epsilon^3)$$

ullet Normalizing to 1/2 the coefficient of the kinetic term in $\delta^2 S$ we obtain

$$\epsilon^2 \, \delta^2 S = \frac{1}{2} \int dt \, d^2 x \sqrt{g} \, h \, \mathcal{D} \, h$$

where

$$\mathcal{D} = -\frac{1}{\sqrt{g}} \partial_t \sqrt{g} \, \partial_t + \frac{\gamma}{\lambda - \frac{1}{2}} (D^2 + R)^2$$

Canonical normalization defines the effective coupling

$$\epsilon = \frac{\kappa}{(\lambda - \frac{1}{2})^{1/2}}$$

12/19

Heat kernel

 The first three coefficients are found to be (using in part [Baggio, de Boer, Holsheimer '11])

$$a_0 = \frac{1}{16\pi} \left(\frac{\lambda - \frac{1}{2}}{\gamma} \right)^{\frac{1}{2}}, \quad a_1 = \frac{7}{48\pi^{3/2}} R$$

$$a_2 = -\frac{1}{64\pi} \left(\frac{\lambda - \frac{1}{2}}{\gamma} \right)^{\frac{1}{2}} \left(K_{ij} K^{ij} - \frac{1}{2} K^2 \right)$$

Plugging into the trace:

$$\frac{1}{2} \operatorname{Tr} \ln(\mathcal{D}) = -\frac{1}{2} \int dt \, d^2 x \sqrt{g} \left\{ (\Lambda^4 - \mu^4) \, \frac{1}{16 \, \pi} \, \left(\frac{\lambda - \frac{1}{2}}{\gamma} \right)^{\frac{1}{2}} + (\Lambda^2 - \mu^2) \, \frac{14}{48 \, \pi^{3/2}} R \right.$$

$$- \ln \left(\frac{\Lambda}{\mu} \right) \, \frac{1}{16 \, \pi} \, \left(\frac{\lambda - \frac{1}{2}}{\gamma} \right)^{\frac{1}{2}} \, \left(K_{ij} \, K^{ij} - \frac{1}{2} \, K^2 \right) + \mathcal{O} \left(\frac{1}{\Lambda^2} \right) \right\}$$

- Note: $[dtd^2x] = -4 \implies$ same divergence degree as in 4d
- Note also the absence of an \mathbb{R}^2 term

14 / 19