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Abstract: <span>1 will present some recent results on the UV properties of atoy model of Horava-Lifshitz gravity in 2+1 dimensions. In particular, |
will illustrate some details of a one-loopcalculation, leading to beta functions for the running couplings. The renormalization group flow obtained in
such way shows that Newton's constant is asymptotically free. However, the DeWitt<br>supermetric approaches its Weyl invariant form with the

same speed and the effective interaction coupling of the scalar degree of freedom remains constant along the flow. | will discuss some general lesson
that we can learn from these results.<br></span>
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Motivations

Reconciling quantum field theory with gravity (beyond EFT)

Horava-Lifshitz gravity
privileged role of time

construct a geometric theory of space AND time
=» obtain a perturbatively renormalizable theory

Pirsa: 14040105 Page 3/22



Motivations

Reconciling quantum field theory with gravity (beyond EFT)

Horava-Lifshitz gravity
privileged role of time

construct a geometric theory of space AND time
=» obtain a perturbatively renormalizable theory

Pirsa: 14040105 Page 4/22



Reconciling quantum field theo ravity (beyond EFT)

Holava-Lifshitz gravity i,
privileged role of time

constrict a geometric theory of space AND time
= obtain a perturbatively renormalizable theory

~ (N} citations, but

Almost no results on its renormalization (low)

© Does it flow 10 GR in the IR7? — Freeks

O ks it really a good UV complation? Is it asympto

tically free?

Pirsa: 140

Page 5/22




Qutline

@ The toy model
@ The one-loop calculation

© Discussion and prospects
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Lifshitz scaling and renormalizability at the Lifshitz point

@ Anisotropic scale invariance at the Lifshitz point

)

S / (lt f[”JJ' ((-)2 + ({Vz} 2 r_';) -)

r=>ar, t—=a’t

@ It is useful to introduce anisotropic scaling dimensions:

@ For z = d, [¢] = 0 and interactions are renormalizable for any

@ Effectively shift critical dimension
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Introducing a foliation for gravity

@ Before applying this idea to gravity, we need to introduce a foliation
@ (d + l)-dimensional manifold with topology M = R x ¥, with given foliation F

@ ADM decomposition of (Euclidean) spacetime metric:

ds*® ;‘\'!rffz | ‘f[,lj((j.f" b .\.'iu".f)(nf.r"J - N7 dt)

@ Foliation-preserving diffeomorphisms Diff »(M):

= 1t 4 gi(.r’.f)

t — t4 ((2)

@ Construct a theory of geometrodynamics invariant under Diffr (M)
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The general model

@ Kinetic term

| l ( - - 11k .
e / dt d® N\ VoKi; G IR K
YT Cr ,

where

(Otgij — ViNj — V;iN;)

, I
I ii = 5 N

is the extrinsic curvature, and
ik | , ‘ .
gl.",ll.f _ _} (”.'L”_H + ”f/”_,rk ) - /\ ”a.;”!.!

is the DeWitt supermetric

A = 1: GR value
A = L. (anisotropic) Weyl invariant value (gi; — ¢**®)g;;, N — ¢4 N)
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The general model

@ Kinetic term

/ dt d* N Vi Kij gi'ml Ky

|67

@ Potential term:
In the projectable version (N
theory of gravity in d dimensions:

| ' 1
Sy / (t r/liJ'«\' \/J V [.‘J’i,h

N(t)) this takes the form of a higher derivative

167G
where V'[g;;] contains spatial curvature invariants with up to 2= derivatives
e.g. il righl H'"’.V:H,I, . R
In the non-projectable version, invariants include also the acceleration vector
ViN

; =
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Lower dimension

@ Lower dimensional theories are widely used as toy models

(e.g. 3d gravity, even if it has no degrees of freedom

@ Lower dimensional HL gravity:

9 (241)d HLG with detailed balance as quantum theory of membranes
Q (241)d HLG without detailed balance and CDT (spectral dimension)

(1+1)d and (2+1)d HLG as playgrounds for classical
dynamics

(2+1)d HLG and extended CDT
(phase diagram)

(141)d HLG and CDT (quantum Hamiltonian)
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(2+1)-dimensional model

@ Simplifications in d = 2:

@ no Weyl tensor, and I ‘], gij It

@ > = 2 is sufficient for renormalizability

@ Nontrivial: one scalar degree of freedom! (because of reduced symmetry)
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(2+1)-dimensional model

@ Simplifications in d = 2:

@ no Weyl tensor, and I ‘], gij It

@ > = 2 is sufficient for renormalizability

@ Nontrivial: one scalar degree of freedom! (because of reduced symmetry)

@ Projectable model:

‘)

H

) i s . -9 . 1]
S=—= /c/hf'.r.\ NG {,\ K= Kiij KV =2A+¢R +1 H'}

Al =D0] =0 [A] =4, ]

@ Non-projectable: 7 more couplings + other complications
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Gauge fixing

Fluctuation fields transform as
hij — hij+ D;i G+ Dj G+ € gij
ni = Ni+ gij L:"

n — 14

@ We can choose a proper-time gauge: n = n; = 0 (only in projectable case!)

@ Fadeev-Popov determinant: V-QIM(—()',-’)
= No log divergences, only renormalization of cosmological term
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Gauge fixing

Fluctuation fields transform as

hij = hij + Di (5 + Dj G + € gij
ng = Ni+ Yij ¢?

n — 1+

@ We can choose a proper-time gauge: n = n; = 0 (only in projectable case!)
@ Fadeev-Popov determinant: v-fm

= No log divergences, only renormalization of cosmological term
@ Residual symmetry: (" = (“(x), time-independent

@ Canonical analysis: gauge-fix residual symmetry on one slice
= constraints preserve gauge fixing on all subsequent slices
= longitudinal modes of /;; are not propagating

Here: no path integral over longitudinal modes
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One loop effective action

@ The one-loop effective action can be written as

l !lJU'IJ

I‘ ‘H'luf + h JH' + C){]?J]

1 ’ma}u

S = =STrin(S;5))

’L;fr}f JH. + 'H‘”‘f + *sr”h

@ The functional trace contains divergences = renormalization
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Effective coupling

@ Expand the action
.“!‘llf],'_" + ¢ h,;-,;] = Hl_r[,"‘.] + ¢ f‘ﬁfl_rh‘f': 'I"'.il + rl-. {52,‘1'[”‘,.,: h'.fl - C)(f:t)

@ Normalizing to 1/2 the coefficient of the kinetic term in S we obtain

2 2 ] ' 2
€ECN°S = 5 / rffrf'.f‘\/_r_//r Dh

I o

Y A=

)

(D* + R)?

@ Canonical normalization defines the effective coupling

— f‘.
(/\ — %)I/'._’

[§
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Heat kernel

@ The first three coefficients are found to be

(using in part [Baggio, de Boer, Holsheimer "11])

(,\.
(,\—._

@ Plugging into the trace:

- = / clt r/z.:'\/g_/{{_\'l — ;r'l)

. 2 14 o
+ (A" — p ).IH 572 i

— - £ KW - R 7| —
]”(,H) T ( : ) (l\,_, I 2/\ )+L (‘\2)}

@ Note: [dtd*r] = —4 = same divergence degree as in 4d

@ Note also the absence of an ?* term
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