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Abstract: <span>Recently, the development of tensor network renormalization approach has provided us a powerful tool to construct new classes of
topological quantum field theories(TQFTS) in discrete space-time. For example, the Turaev Viro&€™s states sum constructions are fixed point
tensor networks representing a special class of 2+1D TQFTSs. Interestingly, the Grassmann variable generalization of tensor network renormalization
approach leads to new classes of TQFTSs for interacting fermion systems, namely, the fermionic TQFTSs. In this talk, | will start with a fermionic
topological nonlinear sigma model and discuss its corresponding new mathematics - group super-conomology theory. Then | will explain the
fermionic generalization of Dijkgraaf -Witten gauge theory by using group supercohomology theory. Finaly | will show examples beyond
fermionic Dijkgraaf -Witten gauge theory and discuss possible new routes towards quantum gravity.<br></span>
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Outline

= Tensor network renormalization as quantum
entanglement renormalization.

= A review of topological quantum phases described by
bosonic tensor network.

* Fermionic topological nonlinear sigma model and a
(special) group super cohomology theory.

* Fermionic Dijkgraaf-Witten and beyond: a new route
towards quantum gravity.

= Summaries and outlook.
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Tensor network renormalization: A first
glance

Why tensor network?

e A natural local representation of partition function in discrete space time
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What is tensor network renormalization?
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» A numerical trick to compute phase diagram for condensed matter systems

What is the advantage of tensor network renormalization?

e It not only describes gapless fixed points that can be understood by
quantum field theory, but also describes nontrivial fixed points beyond
quantum field theory, e.g., topological phases, emergent fields.

Pirsa: 14040099 Page 4/28



Pirsa: 14040099

A simple example
2D statistical Ising model
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Tensor network renormalization: A deep
thinking

Tensor network renormalization is a renormalization
scheme with no energy scale and length scale!

Then what has been renormalized?

e The actual quantity that has been renormalized is quantum entanglement,
or density matrix, and has nothing to do with energy or length scale.

What is encoded in fixed point tensor?

« Different fixed point tensors describe different kinds of quantum
entanglement patterns, which characterize different types of quantum
phases in the thermodynamic limit.

Background independent RG flow is possible, RG fixed
point condition becomes topological invariant condition.

The most natural RG scheme for quantum gravity!

e For some cases, unitary condition also naturally emerges from RG fixed
point/topological invariant condition, e.g., non-chiral topological phases
described by unitary modular tensor category(UMTC) theory in 2+1D.
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An example of background independent
tensor network renormalization in 2D

A RG scheme for trivalent graph in 2D
(M. Levin and Cody P. Nave, Phys. Rev. Lett. 99, 120601 (2007))

The tensor network RG equations are indeed
retriangulation conditions!

S
T — [T > T\ = /SIS

Fixed point condition: T'=T
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* Tensor network renormalization as quantum
entanglement renormalization.

* A review of topological quantum phases described by
bosonic tensor network.
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Tensor network/complex representation
for topological phases in 2+1D

Turaev-Viro states sum invariants for 3D manifolds
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e d is the quantum dimension, D is the total quantum
dimension and G is the (symmetric) 6j symbol

Pentagon Equation = Tetrahedron move
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Tensor network/complex representation
for topological phases in 2+1D

Turaev-Viro states sum invariants for 3D manifolds

2 O | (N | GG
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e d is the quantum dimension, D is the total quantum
dimension and G is the (symmetric) 6j symbol m

Pentagon Equation = Tetrahedron move

GG = Z d.GGG
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Symmetry protected topological(SPT) phases
in arbitrary dimensions

How many different Ising paramagnetic phases? Two!
(M. Levin and Z.-C. Gu, Phys. Rev. B 86, 115109 (2012))

Domain deformation rule  But why not?
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Topologically consistent condition for fixed
point wavefunction
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Discrete space-time topological nonlinear

sigma model
(X. Chen, Z.-C. Gu, Z.-X. Liu, X.-G. Wen (Science 338, 1604 (2012) ) g,

: l P
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q, simplex
e Branched(vertex ordered) d+1-simplex v
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e SPT phases in bosonic systems are classified by d+1
group cohomology? *"t(,‘_ U(1)] In d spacial dimension.

e Each element gives rise to an exactly solvable hermitian
Hamiltonian with a unique ground state on closed manifold.
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An example of 1+1D case

Fixed point condition
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Generalization of Dijkgraaf-Witten gauge
theory into arbitrary dimensions

By gauging the global symmetry in SPT phases, we can
generalize Dijkgraaf-Witten gauge theory into arbitrary
dimensions
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Outline

* Tensor network renormalization as quantum
entanglement renormalization.

= A review of topological quantum phases described by
bosonic tensor network.

* Fermionic topological nonlinear sigma model and a
(special) group super cohomology theory.

* Fermionic Dijkgraaf-Witten and beyond: a new route
towards quantum gravity.

= Summaries and outlook.
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Grassmann tensor network renormalization:
a new world of fermionic topological phases

Why Grassmann number?

o Grassmann path integrals are natural formalisms for fermionic quantum
systems.

Why fermions?

o Fundamental particles, e.g., quarks and leptons, are all fermions.

e Bosons can be regarded as pair of fermions, therefore topological phases
in interacting fermion systems are strictly richer than topological phases in
boson systems.

e There are intrinsic fermionic topological phases that can not be realized in
any bosonic system, e.g. 1/3 fractional quantum hall state.

A new route towards quantum gravity!

« Although classical space-time is described by bosonic variables, there is
no justification whether quantum space-time is described by bosonic
variables or not at cut-off scale.

e Vacuum energy cancellation requires fermionic degree of freedoms for
quantum gravity.
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An example of intrinsic fermionic Ising SPT
phase in 2D
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Domain decoration rule:
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Topological consistent condition for fixed
point wavefunction
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The two intrinsic fermionic Ising SPT phases can be
viewed as the square root of bosonic Ising SPT phase.
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The concept of Grassmann valued
topological Berry phase

The domain decoration picture for wavefunction implies
Grassmann graded amplitude for partition function
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Fermionic topological nonlinear sigma model
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Super co-cycle condition(consistent domain deformation rules)
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A (special) group super-cohomology theory
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A (special) group super-cohomology theory
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o The Steenrod square, one of the most novel structures in algebraic
topology, finally came into physics since its discovery by Steenrod 50
years ago!
Compute group super-cohomology class by using short
exact sequence
sy
0 0— H'[Gy.Ur(1)] = A Gr.Ur(1)] = Z2 — 0
1 [ 0= HZ[G,.Ur(1)] = A7G;, Ur(1)] = H' (G, Z2) — 0
2 | 0= H[Gy.Ur(1)] = #°[Gr,Ur(1)] = BH*(Gy. Z2) = 0
310 = HigialG.Ur(1)] = 27Gs.Ur(1)] = BH(Gy.Z2) — 0
A valid graded structure must be obstruction free:

BHY(G,. Z {nglng € HY[Gy.Zy] and (=)14+2 € B*2(G),. U(1)])

Hiiia[Go. Ur(1)] = H[G,,. Ur(1)]/T

[ is asubgroup of #“[(7,. [7/(1)] generated by (— L

short exact sequence

Pirsa: 14040099 Page 23/28



Outline

» Tensor network renormalization as quantum
entanglement renormalization

* A review of topological quantum phases
described by bosonic tensor network.

* Fermionic topological nonlinear sigma model and
a (special) group super cohomology theory

* Fermionic Dijkgraaf-Witten and beyond: a new
route towards quantum gravity

= Summaries and outlook.
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Fermionic Dijkgraaf-Witten gauge theory
and beyond

By gauging the global symmetry in fermionic SPT
phases, we can obtain fermionic Dijkgraaf-Witten gauge
theory in arbitrary dimensions.

New classes of fermionic topological phases with
topological Majorana modes on open manifold.
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Topological Majorana mode in 1+1D

Topological Majorana mode in the
ends of Kitaev's Majorana Chain

\ \

H Z: Z(« r-)(r-,.wr,'.w‘): & %1 =17;) A Kitaev (2001)

! 1 S. D.Sarma(2010)
Topologically invariant partition function
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Topological Majorana mode in 3+1D

Fermionic topological phase with topological
Majorana modes on open manifold also exists in 3D!

Conjecture: after summing over topology, the partition
function describing topological Majorana modes is
gapless and might describe Einstein gravity.

 Einstein gravity can be derived in a saddle approximation of a fermionic
topological quantum field theory with Lorentz gauge symmetry.
(Z. C. Gu, 2014, to appear)

Testable predictions

o By further assuming a Majorana neutrino is made up of four topological
Majorana zero modes at cutoff scale, we naturally explained the origin of
three generations of neutrinos and obtained the neutrino mass mixing
matrix from a first principle.

« Mixing angles are intrinsically close to experimental data. Exact neutrino
mass can be predicted according to current neutrino oscillation data, and
CP violation angle is also predicted. (Z C Gu, arXiv:1308.2488, arXiv:
1403.1869)
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Conclusions and future work

e Tensor network renormalization is a concept of entanglement
renormalization, which is background independent and leads to
topological invariance at fixed point.

o Grassmann tensor network renormalization gives rise to new
classes of topological phases in fermion systems.

e Fermionic topological phase with topological Majorana modes
naturally explains the origin of three generations of neutrinos
and their mass mixing angles, therefore such a topological
phase might also describe quantum grauvity.

e Topological Majorana modes could be fundamental block of all
matter fields, and U(1)*SU(2)*SU(3) gauge fields in Standard
Model will arise naturally.(z. C. Gu, 2014, in preparing)

e Since the boundary theory of fermionic topological phase with
topological Majorana modes should be described by conformal
field theory(CFT), and therefore it might provide us a first
principle derivation of ADS-CF T duality!
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